CELESTIAL NAVIGATION
 USER`s GUIED
 For 14-Software Programs

Captain / ADEL MOSTAFA

To the Student \& Navigator

With the hope that this work
will stimulate an interest in Celestial Navigation
and provide an acceptable guide to its software applications.
Contents
Introduction 4
Group(1) 7
Rhumb Line (Lat. \& Long.) 8
Solved application 8
Training applications 9
Answers 10
Rhumb Line (T.Co. \& Dist.) 12
Solved application (1) 12
Solved application (2) 13
Training applications 13
Answers 14
Group(2) 15
Prayer Times 16
Solved application 17
Training applications 18
Answers 18
Compass Error (Time Method) 20
Solved application (1) 21
Solved application (2) 22
Training applications 23
Answers 24
Compass Error (Amplitude Method) 26
Solved application 27
Training applications 28
Answers 29
Star Chart 31
Solved application 32
Training applications 34
Answers 36
Meridian Passage 41
Solved application 42
Training applications 44
Answers 45
Contents (continue)
Group(3) 49
Sun Sight 50
Solved application 50
Training applications 54
Answers 55
Sun Run Sun 58
Solved application 59
Training applications 64
Answers 66
Star Sight 69
Solved application 69
Training applications 71
Answers 73
Universal Method 76
Solved application 77
Training applications 81
Answers 84
Egyptian Method 87
Solved application 89
Training applications 91
Answers 93
Group(4) 99
Unknown Star Identification 100
Solved application 101
Training applications 102
Answers 103
Equation of Time; Coordinates of the Sun \& Aries 106
Solved application 106
Training applications 107
Answers 108
Extracted pages from Nautical Almanac Tables 1990

Introduction

Since the use of the ship's positioning system by GPS, a saying has emerged that Celestial Navigation science has ended its era and that the Sextant should be hidden inside museums.
To respond to this statement, we summarize the following:
First: Celestial Navigation is not limited to determining the position of the ship, but it goes beyond that limited mission to the following important topics:

1) Compass error setting
a) Measuring the direction of the sun during theoretical sunrise or sunset
b) Measure the direction of any low-altitude celestial body
2) Definition of different time measurement systems and the relationship between them.
3) Knowledge of the foundations of the system of rising and setting celestial bodies.
4) Knowledge of the foundations of the annual movement of the sun and its effect on the phenomenon of day and night.
5) Transforming the legal foundations of the times of the call to prayer for the five daily prayers into applied equations.

Second: According to the International Maritime Organization IMO, Celestial Navigation is still recognized as a method for determining the observed position of a ship, and determining the ship's position by GPS is a confirmatory system.

Third: The flight of many navigators from the application of Celestial Navigation in determining the position of the ship is attributed to several reasons:

1) Unfamiliarity with adjusting the marine sextant.
2) Unskilled in using the marine sextant to measure the altitude of celestial bodies.
3) Awe of the length of the calculations to reach the elements of the position line.
4) Unfamiliarity with determining the most likely observed location after drawing three or more position lines.

To solve this dilemma, many available computer programs only require the navigator to observe stars or planets and enter data to obtain the most likely observed position; thus, the solution can be summarized in that the navigators are trained to control and use the marine sextant.

It is worth noting that one of the most important duties of the navigator is to calculate the time of occurrence of any natural phenomenon for a sailing ship; Therefore, the navigator resorts to applying the method of successive approximation. This method consists of applying the following steps:

1) Calculate the future time of occurrence of the phenomenon using the ship's current position; which is known as the first approximation.
2) Finding the ship's position at the time that was found in the previous step.
3) Using the ship's last position to calculate the time of the future occurrence of the phenomenon again, this is known as the second approximation.
Of course, the mathematical position of the ship can be obtained using the sailing map, or analytically using the following equations:
d. Lat. = dist. Cos T. Co.
dep. = dist. Sin T. Co.
d. Long. = dep. / Cos (mean Lat.)

Natural phenomena that require finding their future time of occurrence while sailing; can be summarized in one sailing day as follows:

1) Morning civil twilight time to prepare for star observations.
2) Sunrise time to check the compass error (amplitude method).
3) The accurate time of the meridian passage of the sun to find the Observed Latitude of the ship at noon.
4) Sunset time to check the compass error (amplitude method).
5) Evening civil twilight time to prepare for star observations.

It is obvious that there are many programs that solve these requirements, but alone; any calculation of the time of the morning civil twilight, for example, without preparing the stars chart for observation. So the thought was to design several programs to solve these requirements; these programs are:

A. The first group to solve general navigation problems:

1. A program for finding the arrival position with the knowledge of the starting position, the true course and the distance traveled.
2. A program for finding the distance and true course from the departed position to the arrived position.
B. The second group to solve the problems of daily celestial navigation activities:
3. A program for finding the time for the next prayer; and the direction of the Qiblah at that time.
4. A program for finding Compass error (Time Method).
5. A program for finding Compass error (Amplitude Method).
6. A program to prepare for observing the stars (Star Chart) during the morning (or evening) twilight.
7. A program to find the time to the nearest second to cross the sun on the ship's meridian.
C. The third group for solving basic celestial navigation problems:
8. A Program to solve the observation of the sun.
9. A program to solve two observations of the sun, with a long run in between, in order to obtain the observed (fixed) position.
10. A Program to solve the observation of a star
11. A program for finding the most probable observed position by observing a group of stars simultaneously in a Universal Method.
12. A program for finding the most probable observed position by observing a group of stars simultaneously in the Egyptian Method.
D. The fourth group to solve problems related to celestial navigation:
13. A Program to identify a bright unknown star among the clouds.
14. A program for finding the coordinates of the sun and the point of the vernal equinox, as well as the equation of time.

It should be noted that these programs are available to my sons and fellow naval officers as a science to benefit from.
This is what was agreed upon by the work team, Eng. Islam Badawy, who designed these programs, and my dear son, Ahmed Adel, who designed the required graphics.

In the exercises; you shall use the following equipment's:

- Captain Adel Mostafa soft-ware programs which is given free.
- Pages of Nautical Almanac Tables for the year 1990 are accompanied for the concerned dates.
- Any Nautical Almanac Tables to extract:
o Increments for Sun and Aries.
- Dip angle correction.
o Altitude corrections for sun and stars
Applications of these Soft-Ware Programs are explained separately in the next pages.

GROUP (1)

ELEMENTARY GENERAL NAVIGATION PROBLEMS

- Rhumb Line (Lat. \& Long.)
- Rhumb Line (T. Co \& Dist.)

A. GROUP (1)

1) Rhumb Line (Lat. \& Long.)

To apply this software program you must:
Calculate distance run in the interval of run.
It is designed to obtain reached position by the knowledge of initial position, true course and distance run.
The screen of the software program is given below

Solved Application:
Given:

- $\mathrm{ZT}_{1} 2200$ Mar. $12^{\text {th }}$;
- \quad DR ($31^{\circ} 07^{`} .1 \mathrm{~N} ; 24^{\circ} 45^{\circ} .8 \mathrm{E}$)
- True Course $153^{\circ} .0$
- Speed 16.4 k

Find DR at $\mathrm{ZT}_{2} 0400$ Mar. $13^{\text {th }}$.

Procedure of application
Step (1): Obtaining interval of run

ZT_{2} $\mathrm{ZT}_{1}(-)$	$0400 \mathrm{Mar} .13^{\text {th }}$ $2200 \mathrm{Mar} .12^{\text {th }}$
Interval	$6 \mathrm{~h} \mathrm{00m}$

Step (2): Obtaining distance run
Distance run $=[6 \mathrm{~h} 00 \mathrm{~m} \mathrm{x} \mathrm{16.4k}]=\underline{98.4}$ Miles

Step (3): Apply software as follows;

RHUMB LINE (LAT + LONG)

Submit
Result obtained $D R_{0400}$ March $13^{\text {th }}\left(29^{\circ} 39^{`} .4 \mathrm{~N} ; 25^{\circ} 37^{`} .6 \mathrm{E}\right.$)

TRAINING APPLICATIONS

Application (1)
Given:

- Initial DR ($31^{\circ} 15^{`} .9 \mathrm{~N} ; 115^{\circ} 44^{`} .7 \mathrm{~W}$)
- Distance runs 167.5 M
- True course to steer $201^{\circ} .0$

Calculate Final DR?

Application (2)
Given:

- Initial DR ($37^{\circ} 15^{`} .9 \mathrm{~S} ; 177^{\circ} 41^{`} .7 \mathrm{~W}$)
- Distance runs 367.8 M
- True course to steer $259^{\circ} .0$

Calculate Final DR?

Application (3)
Given:

- Initial DR (01 $\left.15^{`} .9 \mathrm{~N} ; 077^{\circ} 51^{`} .3 \mathrm{E}\right)$
- Distance runs 452.6 M
- True course to steer $169^{\circ} .0$

Calculate Final DR?

Application (4)
Given:

- Initial DR (00ำ $\left.10^{`} .5 \mathrm{~S} ; 179^{\circ} 55^{`} .0 \mathrm{E}\right)$
- Distance runs 76.0 M
- True course to steer $066^{\circ} .0$

Calculate Final DR?

ANSWERS

Application (1)

RHUMB LINE (LAT + LONG)

Submit
Result obtained (2839`. \(\left.5 \mathrm{~N} ; 116^{\circ} 54^{`} .0 \mathrm{~W}\right)\)
Application (2)

RHUMB LINE (LAT + LONG)

D.R.Lat		
37	15.9	$5 \quad$
D.R.Long		
177	41.7	W -
Distance Run		
367.8		
True Course		
259		
Lat2 $=38^{\circ}$ 26.1' S	Long2 $=174{ }^{\circ}$	41.1' E

Submit
Result obtained (38²6`.1 S; \(174^{\circ} 41^{`} .1\) E)
Application (3)

```
RHUMB LINE (LAT + LONG)
    D.R.Lat N N N N
    D.R.Long
    #7 51.3 E \bullet
    Distance Run
    452.6
    True Course
    169
```


Submit
Result obtained ($6^{\circ} 08^{`} .4$ S; $079^{\circ} 17^{`} .7$ E)

Application (4)
RHUMB LINE (LAT + LONG)
D.R.Lat
$00 \quad 10.5 \mathrm{~S}$
D.R.Long

179
Distance Run
76
True Course
066
Lat2 $=\mathbf{0}^{\circ} \quad 20.4^{\prime} \mathrm{N} ;$ Long2 $=178^{\circ} 55.6^{\prime} \mathrm{W}$
Submit
Result obtained $\left(00^{\circ} 20^{`} .4 \mathrm{~N} ; 178^{\circ} 55^{`} .6 \mathrm{~W}\right)$

2) Rhumb Line (T. Co \& Dist.)

To apply this software program no previous calculations is needed:
It is designed to obtain true course and distance run from the initial position to the reached position.
The screen of the software program is given below

Solved Application (1):

Given:
DR position ($38^{\circ} 26^{`} .1 \mathrm{~S}$; $174^{\circ} 41^{`} .6 \mathrm{E}$)
Observed position ($38^{\circ} 30^{`} .5 \mathrm{~S}$; $174^{\circ} 37^{\circ} .1 \mathrm{E}$)
Calculate the shift and bearing of the observed position from the DR position.
Procedure of application

Apply software as follows

Result obtained:
Shift of the observed position from DR position is5.6 Miles in the direction $218^{\circ} .7$

Solved Application (2):

Given:

Your vessel in DR position ($38^{\circ} 30^{`} .5 \mathrm{~S}$; $174^{\circ} 37^{`} .1 \mathrm{E}$) received SOS signal from a ship in DR position ($30^{\circ} 39^{`} .1 \mathrm{~S}$; $172^{\circ} 38^{`} .8 \mathrm{E}$).
Calculate distance run and true course to steer to arrive to that ship?
Apply software as follows

Submit
Result obtained:
Distance 481.4 Miles; True course to steer $348^{\circ} .3$

TRAINING APPLICATIONS

Application (1)
Given:
DR position ($28^{\circ} 23^{`} .5 \mathrm{~N} ; 170^{\circ} 13^{`} .7 \mathrm{E}$)
Observed position ($28^{\circ} 32^{`} .2 \mathrm{~N} ; 170^{\circ} 17{ }^{\circ} .3 \mathrm{E}$)
Calculate the shift and bearing of the observed position from the DR position.

Application (2)
Given:
Your vessel in DR position (42 ${ }^{\circ} 39^{`} .5 \mathrm{~N} ; 174^{\circ} 08^{`} .1 \mathrm{~W}$) received SOS signal from a ship in DR position ($37^{\circ} 09^{`} .1 \mathrm{~N} ; 172^{\circ} 38^{`} .8 \mathrm{~W}$).
Calculate distance run and true course to steer to arrive to that ship?

ANSWERS

Application (1)
RHUMB LINE (COURSE + DISTANCE)

D.R.Lat	
28	23.5
D.R.Long	
170	
D.R.Lat	
28	32.7
D.R.Long	
170	17.3

(Distance: 9.3M ; TBg: 20º
Submit
Result obtained:
Shift of the observed position from DR position is9.3 Miles in the direction $020^{\circ} .0$

Application (2)

RHUMB LINE (COURSE + DISTANCE)		
D.R.Lat		
42	39.5	N -
D.R.Long		
174	8.1	$n-$
D.R.Lat		
37	9.1	N -
D.R.Long		
172	38.8	$n-$

(Distance: 337.4M ; TBg: $\mathbf{1 6 8 . 3 ^ { \circ }}$)
Submit

Result obtained:
Distance 337.4 Miles; True course to steer $168^{\circ} .3$

GROUP (2)

DAILY CELESTIAL NAVIGATION ACTIVITIES

- Prayer Times
- Compass Error (Time Method)
- Compass Error (Amplitude Method):
- Star Chart
- Meridian Passage

B. GROUP (2)

3) Prayer Times

To apply this software programs you can proceed without any previous calculations.
The software program is designed to obtain:

- El-Fagr Time and El-Qibla direction
- El-Sherouk Time (Sun rise)
- El-Zohr Time (Noon) and El-Qibla direction
- El-Asr Time and El-Qibla direction
- El-Maghrib Time (Sun set) and El-Qibla direction
- El-Esha Time and El-Qibla direction

The screen of the software program is given below

Solved Application (1):
ZT 1200;_Z.N. (+2); Jul. 11 ${ }^{\text {th }}, 1990$

- DR ($35^{\circ} 10^{`} .1 \mathrm{~N} ; 35^{\circ} 41^{`} .2 \mathrm{~W}$)
- True Course $250^{\circ} .0$
- \quad Speed 17 k
- Calculate El-Asr Time and El-Qibla direction

Solution

Apply software as follows;

ANSWER
El-Asr time 16h 20m 11s
Kepla Direction $100^{\circ} .1$

TRAINING APPLICATIONS

Application (1)
ZT 0000; Z.N. (-9); August $3^{\text {rd }}$, 1990

- DR ($31^{\circ} 17^{`} .1 \mathrm{~N} ; 135^{\circ} 33^{`} .2 \mathrm{E}$)
- True Course $140^{\circ} .0$
- \quad Speed 18.6 k
- Calculate El-Fagr Time and El-Qibla direction

Application (2)
ZT 1600;_Z.N. (+9); October $2^{\text {nd }}, 1990$

- DR ($41^{\circ} 53^{`} .1 \mathrm{~S} ; 139^{\circ} 53^{`} .2 \mathrm{~W}$)
- True Course $020^{\circ} .0$
- Speed 19.5 k
- Calculate El-Maghreb Time and El-Qibla direction

ANSWERS

Application (1)

El-Fagr time 03h 35m 11s
Kepla Direction $291^{\circ} .7$

Application (2)

El-Maghreb time 18h 24m 54s
Kepla Direction $178^{\circ} .2$

4) Compass Error (Time Method)

To apply this software program:
In case of a star you must:

- Calculate $\left[\underline{G H} A_{\text {star }}\right]$ at GMT of taking compass or gyro bearing or both.
- Extract [Dec. star]

In case of Sun you must:

- Calculate $\left[\underline{G H} A_{\text {sun }}\right]$ at GMT of taking compass or gyro bearing or both.
- Calculate [Dec. sun]

In both cases:

- Correct variation to year 1990 for exercises; (practically in deep sea it is corrected to the current year of sailing).

The software program is designed to obtain;

- Compass Error
- Gyro Compass Error
- Deviation

The screen of the software program is given below

Solved Application (1):

The star Dubhe was seen at low altitude on the western horizon.
It is required to check the error of the compasses.
The following data were recorded;

- GMT: 23h 40m 40s on August $23^{\text {rd }} ; 1990$
- DR: $29^{\circ} 30^{`} .0 \mathrm{~N} ; 46^{\circ} 40^{`} .0 \mathrm{~W}$
- Compass Bearing $330^{\circ} .0$
- Gyro Bearing $332^{\circ} .0$
- Variation (1978) $3^{\circ} .0$ E (decreasing $5^{`}$ annually)

Calculate the error of each compass and the deviation.

Solution;

Step (1) Extract G.H.A.* \& Dec*

G.H.A. γ	$316^{\circ} 58{ }^{\text {. }} 4$	Dec	$61^{\circ} 48^{\prime} .2 \mathrm{~N}$
Incr.	$10^{\circ} 11^{{ff41c7301-8809-4929-930c-690d36f57efa}} .9$		
G.H.A.*	$161^{\circ} 23^{\prime} .0$		

Step (2)
Calculate $\operatorname{Var}_{1990}$;
Var. ${ }_{1990}=$ Var. $_{1978}-(5 \mathrm{x} 12)=3^{\circ} .0 \mathrm{E}-1^{\circ} .0=2^{\circ} .0 \mathrm{E}$
Step (3)
Apply software as follows;

COMPASS ERROR			
GHA at GMT			
161	23		
Dec at GMT			
61	48.2	N -	
D.R.Lat			
29	30	N -	
D.R.Long			
46	40	w	
Compass BG.			
330			
Gyro BG.			
332			
Variation			
2	E		
C.error $=3.6{ }^{\circ} \mathrm{E}$			
G.error $=1.6^{\circ} \mathrm{L}$			
Deviation $=1.6{ }^{\circ} \mathrm{E}$			Submit

Answers: Compass Error [3. 6 E$] \&$ Deviation [1 .6 E$]$
Gyro Error [$1^{\circ} .6$ Low]

Solved Application (2):

Sun was seen at low altitude on the western horizon.
It is required to check the error of the compasses.
The following data were recorded;

- GMT: 01h 24 m 28 s on January $2^{\text {nd }} ; 1990$
- DR: $31^{\circ} 15^{`} .0 \mathrm{~S} ; 125^{\circ} 22^{`} .0 \mathrm{~W}$
- Compass Bearing $259^{\circ} .0$
- Gyro Bearing $255^{\circ} .5$
- Variation (1986) $1^{\circ} .4$ E (decreasing 6` annually)

Calculate the error of each compass and the deviation.

Solution;

Step (1) Extract G.H.A.* \& Dec*

G.H.A.	194°	$03^{{f4b42c388-0331-41f9-821e-bf7b32bbda75}} .4 \mathrm{~S}$				
Incr.	06°	$07^{\circ} .0$	d. Corr.	$0^{{fa34f2447-37a8-41c1-9f26-750064db3a12}} .1$	C. Dec	$22^{\circ} 57^{`} .3 \mathrm{~S}$

Step (2)
Calculate $\operatorname{Var}_{1990}$;
Var. $1990=$ Var. $1986-\left(6^{`} \mathrm{x} 4\right)=\mathbf{1}^{\mathrm{o}} .4 \mathrm{E}-0^{\circ} .4=1^{\mathrm{o}} .0 \mathrm{E}$
Step (3)
Apply software as follows;

C.error $=2.2^{\circ} \mathrm{W}$
G.error $=1.3^{\circ} \mathbf{L}$

Deviation $=3.2^{\circ} \mathrm{W}$
Answers: Compass Error [2² 2 W] \& Deviation [3 .2 W$]$
Gyro Error [$1^{\circ} .3$ Low]

TRAINING APPLICATIONS

Application (1)
The star Altair was seen at low altitude on the western horizon.
It is required to check the error of the compasses.
The following data were recorded;

- GMT: 19h 31m 29s on June $17^{\text {th }} ; 1990$
- DR: $34^{\circ} 10^{`} .0 \mathrm{~S} ; 144^{\circ} 35^{`} .0 \mathrm{E}$
- Compass Bearing $312^{\circ} .0$
- Gyro Bearing $308^{\circ} .0$
- Variation (1980) $3^{\circ} .0$ E (decreasing 3` annually)

Calculate the error of each compass and the deviation.

Application (2)

The star Hadar was seen at low altitude on the eastern horizon.
It is required to check the error of the compasses.
The following data were recorded;

- GMT: 7h 32m 40s on February $17^{\text {th }} ; 1990$
- DR: $41^{\circ} 20^{`} .0 \mathrm{~S} ; 171^{\circ} 20^{\circ} .0 \mathrm{E}$
- Compass Bearing $155^{\circ} .0$
- Gyro Bearing $159^{\circ} .5$
- Variation (1986) $1^{\circ} .5$ W (increasing $15^{`}$ annually)

Calculate the error of each compass and the deviation.

Application (3)

Sun was seen at low altitude on the eastern horizon.
It is required to check the error of the compasses.
The following data were recorded;

- GMT: 14h 42m 14s on June 17 ${ }^{\text {th }} ; 1990$
- DR: $21^{\circ} 10^{`} .0 \mathrm{~N} ; 125^{\circ} 00^{`} .0 \mathrm{~W}$
- Compass Bearing $065^{\circ} .5$
- Gyro Bearing $069^{\circ} .0$
- Variation (1975) $0^{\circ} .5$ W (decreasing 4` annually)

Calculate the error of each compass and the deviation.

Application (4)

Sun was seen at low altitude on the eastern horizon.
It is required to check the error of the compasses.
The following data were recorded;

- GMT: 22h 35m 10s on August $23^{\text {rd }} ; 1990$
- DR: $22^{\circ} 05^{`} .0 \mathrm{~N} ; 120^{\circ} 30^{`} .0 \mathrm{E}$
- Compass Bearing $085^{\circ} .0$
- Gyro Bearing $083^{\circ} .0$
- Variation (1978) $1^{\circ} .5$ W (increasing $5^{`}$ annually)

Calculate the error of each compass and the deviation.

ANSWERS

Application (1)

Answers: Compass Error [5. 9 W] \& Deviation [$8^{\circ} .4 \mathrm{~W}$]
Gyro Error [$\left.1^{\circ} .9 \mathrm{H}\right]$

Application (2)

COMPASS ERROR

Answers: Compass Error [5º. 3 E] \& Deviation [7. 8 E]
Gyro Error [$0^{\circ} .8$ Low]

Application (3)

COMPASS ERROR

Answers: Compass Error [$\left.4^{\circ} .1 \mathrm{E}\right] \&$ Deviation [3 .6 E$]$
Gyro Error [$0^{\circ} .6$ Low]

Application (4)
COMPASS ERROR

Answers: Compass Error [2. 4 W] \& Deviation [$0^{\circ} .1 \mathrm{E}$]
Gyro Error [0 .4 H$]$

5) Compass Error (Amplitude Method):

It is a chance to check compasses and deviation at theoretical sunrise or sunset. The sun`s bearing must be taken a certain situation of the sun`s disc. This is correct only when the altitude of the lower limb of the sun`s disc is nearly equals its semi-diameter. Practically the navigator must calculate the True Bearing of the sun`s disc at the phenomena in-advance. At the moment when he observes the compass bearing, he can obtain the compass error directly.

The software program is designed to obtain;

- True Bearing
- Compass Error
- Gyro Compass Error
- Deviation

The screen of the software program is given below

Compass Error (Amplitude)			
	ZT		
	h	m	S
	Date		
	D	M	Y
	Phenomena		
	Sunrise / Sunset		
	DR Latitude		
	\bigcirc	-	N / S
	DR Longitude		
	\bigcirc		E/W
	True Co.	Speed	
	\bigcirc	knots	
	Compass	earing	
	\bigcirc		
	Gyro Bear		
	\bigcirc		
	Variation		
	\bigcirc	E / W	

Solved Application

ZT 0400 April $2^{\text {nd }} 1990$;

- DR ($30^{\circ} 10^{`} .1 \mathrm{~N} ; 25^{\circ} 19^{`} .6 \mathrm{E}$)
- True Course 153°
- Speed 16 k
- Variation $19901^{\circ} .3 \mathrm{E}$

In order to check the compasses at theoretical sunrise phenomena; calculate the True Bearing of the sun at the phenomena in-advance.
At theoretical Sun Rise:

- Compass bearing was $094^{\circ} .7$
- Gyro bearing was $093^{\circ} .6$

Calculate the error of each compass and the deviation.

Solution;

Apply software as follows;

COMPASS ERROR Amplitude

Answer:
True Bearing at Sunrise $084^{\circ} .5$
Compass Error $0^{\circ} .2 \mathrm{~W}$
Gyro Error $0^{\circ} .9$ Low
Deviation $1^{\circ} .5 \mathrm{~W}$

TRAINING APPLICATIONS

Application (1)
ZT 0400 August $23^{\text {th }} 1990$;

- DR ($\left.44^{\circ} 11^{`} .1 \mathrm{~S} ; 30^{\circ} 57^{`} .8 \mathrm{E}\right)$
- True Course 100°
- Speed 16 k
- Variation ${ }_{1990} 2^{\circ}$. 1 E

In order to check the compasses at theoretical sunrise phenomena; calculate the True Bearing of the sun at the phenomena in-advance.
At theoretical Sun Rise:

- Compass bearing was $073^{\circ} .0$
- Gyro bearing was $074^{\circ} .0$

Calculate the error of each compass and the deviation.

Application (2)
ZT 1600 October $15^{\text {th }} 1990$;

- \quad DR ($39^{\circ} 15^{`} .4 \mathrm{~N} ; 179^{\circ} 31^{`} .0 \mathrm{E}$)
- True Course 085°
- Speed 22 k
- Variation ${ }_{1990} 3^{\circ} .0 \mathrm{~W}$

In order to check the compasses at theoretical sunrise phenomena; calculate the True Bearing of the sun at the phenomena in-advance.
At theoretical Sun Rise:

- Compass bearing was $261^{\circ} .1$
- Gyro bearing was $260^{\circ} .7$

Calculate the error of each compass and the deviation.

ANSWERS

Application (1)

COMPASS ERROR Amplitude

			True Bearing $=73.8^{\circ}$
Cancel	C.error $=0.8^{\circ} \mathrm{E}$		
	G.error $=0.2^{\circ} \mathrm{H}$		
	Deviation $=1.3^{\circ} \mathrm{W}$		

Answer:
True Bearing at Sunrise $073^{\circ} .8$
Compass Error $0^{\circ} .8 \mathrm{E}$
Gyro Error $0^{\circ} .2 \mathrm{H}$
Deviation $1^{\circ} .3 \mathrm{~W}$

Application (2)

COMPASS ERROR Amplitude

Answer:
True Bearing at Sunrise $259^{\circ} .1$
Compass Error 2°. 0 W
Gyro Error $1^{\circ} .6$ High
Deviation $1^{\circ} .0$ E

6) Star Chart

To apply this software programs you can proceed without any previous calculations.

The software program is designed to obtain:
Star Chart at Evening or Morning civil twilight (the middle time of taking star sights), Accompanied with a table of suitable stars to be observed:

Star Name	altitude	True Bg.
\downarrow	\downarrow	\downarrow

The screen of the software program is given below

Solved Application

At Z.T. 0005 January $2^{\text {nd }} ; 1990$.
Ship was in DR Position ($32^{\circ} 45^{`} .0 \mathrm{~S} ; 173^{\circ} 20^{`} .0 \mathrm{E}$)

- Steaming Speed 19.5 K
- Steering true course $333^{\circ} .0$

Calculate:

- Choose and name (7) suitable stars for observation at the morning twilight; referring to the Air Navigation Tables as a guide, giving their predicted altitudes \& bearings (to the nearest degree).
- Draw a figure showing the horizon, true course of the ship and the chosen stars as a guide for observation.

Manual Calculations:

To find G.M.T. of The Morning Civil Twilight:

$2^{\text {nd }}$ Approximation			
L.M.T.	$0436 \mathrm{Jan} .2{ }^{\text {nd }}$		
Lat. Corr ${ }^{\text {¹ }}$	4		
L.M.T.	0432 Jan. $2^{\text {nd }}$		
\pm Long. w/ E	1130		
G.M.T.2	1702 Jan. $1^{\text {st }}$		
G.M.T. ${ }_{1}$	1655 Jan. $1^{\text {st }}$		
Interval	0007 (+)		
Distance Run $=(00 \mathrm{~h} 07 \mathrm{~m}) \times 19.5 \mathrm{k}$ True Course to steer 333.0 d. Lat. dep. M.		$=2.3 \mathrm{M}$	
		d. Long.	
2. $0 \mathrm{~N} \quad 1 \mathrm{l}$	W latitude	1 1.2 W	
DR_{2} Lat.	$31^{\circ} 21.0 \mathrm{~S}$	Long.	$172^{\circ} 29^{\circ} .5 \mathrm{E}$
d. Lat.	2.0 N	d. Long.	1 . 2 W
DR_{3} Lat.	$31^{\circ} 19.0 \mathrm{~S}$	Long.	$172^{\circ} 28^{\prime} .3 \mathrm{E}$

Calculating LHA γ (At G.M.T.2)

G.H.A. γ	$356^{\circ} \quad 05^{{f357742ae-b8dc-4097-862b-f3daa703d0ea} .} 1$
G.H.A. γ	$356^{\circ} 35^{{fd4b5cca8-afb6-4da6-9faf-dc653354b32c}} .5$

Extract The 7-Recommended Stars

Star Name	Altitude	True Bearing
Arcturus	24°	047°
Antares	$22^{\circ} .5$	108°
Acrux	56°	166°
Canopus	34°	224°
Sirius	$27^{\circ} .5$	266°
Procyon	27°	295°
Regulus	44°	337°

Procedure of application
A. Application of the soft-ware program;

B. Results obtained:

STAR CHART

TABLE OF ALTITUDES AND BEARINGS

No	Star Name	Altitude	True Bearing
1	Acrux	$55^{\circ} 59.8{ }^{\prime}$	$165^{\circ} 28.3{ }^{\prime}$
2	Adhara	$35^{\circ} 20$	$254^{\circ} 29.6{ }^{\prime}$
3	Alphard	$56^{\circ} 36.4{ }^{\prime}$	$305^{\circ} 26.5{ }^{\prime}$
4	Antares	$21^{\circ} 53.2{ }^{\prime}$	$108^{\circ} 2.7{ }^{\prime}$
5	Arcturus	$23^{\circ} 55^{\prime}$	$47^{\circ} 0.1{ }^{1}$
6	Atria	$31^{\circ} 13^{\prime}$	$155^{\circ} 25.4{ }^{\prime}$
7	Avior	$49^{\circ} 50.9{ }^{\prime}$	$213^{\circ} 0.4{ }^{\prime}$
8	Canopus	$34^{\circ} 12.3{ }^{\prime}$	$224{ }^{\circ} 5.8{ }^{\prime}$
9	Denebola	$43^{\circ} 11.6{ }^{\prime}$	$11^{\circ} 57.7^{\prime}$
10	Gacrux	$60^{\circ} 51.1{ }^{\prime}$	$158^{\circ} 39.1{ }^{\prime}$
11	Gienah	$70^{\circ} 27.2^{\prime}$	$47^{\circ} 42.6{ }^{\prime}$
12	Hadar	$49^{\circ} 51.9{ }^{\prime}$	$148^{\circ} 43.9{ }^{\prime}$
13	Menkent	$54^{\circ} 5.2^{\prime}$	$109^{\circ} 50.5{ }^{\prime}$
14	Miaplacidus	$47^{\circ} 33^{\prime}$	$194^{\circ} 40.6{ }^{\prime}$
15	Procyon	$27^{\circ} 11.7{ }^{\prime}$	$295{ }^{\circ} 1.7{ }^{\prime}$
16	Regulus	$44^{\circ} 0.3{ }^{\prime}$	$336{ }^{\circ} 34.3{ }^{\prime}$
17	Rigil Kentaurus	$45^{\circ} 23.8{ }^{\prime}$	$147^{\circ} 33^{\prime}$
18	Sirius	$28^{\circ} 5.4{ }^{\prime}$	$266^{\circ} 13.2^{\prime}$
19	Spica	$53^{\circ} 30.5{ }^{\prime}$	$64^{\circ} 1.6{ }^{\prime}$
20	Suhail	$61^{\circ} 59.6{ }^{\prime}$	$235{ }^{\circ} 37.3{ }^{\prime}$
21	zubenelgenubi	$38^{\circ} 46.6^{\prime}$	$85^{\circ} 58.4{ }^{\prime}$

TRAINING APPLICATIONS

Application (1)

At Z.T. 0140 December $15^{\text {th }}$; 1990.
Ship was in DR Position ($38^{\circ} 25^{`} .0 \mathrm{~S} ; 159^{\circ} 38^{`} .0 \mathrm{E}$)

$$
\begin{array}{ll}
\text { Steaming Speed } & 18.4 \text { knots } \\
\text { Steering True course } & 059^{\circ} .0
\end{array}
$$

Calculate:

- Choose and name (7) suitable stars for observation at the morning twilight; referring to the Air Navigation Tables as a guide, giving their predicted altitudes \& bearings (to the nearest degree).
- Draw a figure showing the horizon, true course of the ship and the chosen stars as a guide for observation.

Application (2)

At Z.T. 1340 December $15^{\text {th }}$; 1990.
Ship was in DR Position ($38^{\circ} 25^{`} .0 \mathrm{~S}$; $159^{\circ} 38^{`} .0 \mathrm{~W}$)

Steaming Speed	18.4 knots
Steering True course	$077^{\circ} .0$

Calculate:

- Choose and name (7) suitable stars for observation at the evening twilight; referring to the Air Navigation Tables as a guide, giving their predicted altitudes \& bearings (to the nearest degree).
- Draw a figure showing the horizon, true course of the ship and the chosen stars as a guide for observation.

Application (3)

At Z.T. 1330 December 17 ${ }^{\text {th }} ; 1990$.
Ship was in DR Position ($37^{\circ} 40^{`} .0 \mathrm{~S}$; $160^{\circ} 50^{`} .0 \mathrm{E}$)

Steaming Speed	19.0 knots
Steering True course	$099^{\circ} .0$

Calculate:

- Choose and name (7) suitable stars for observation at the evening twilight; referring to the Air Navigation Tables as a guide, giving their predicted altitudes \& bearings (to the nearest degree).
- Draw a figure showing the horizon, true course of the ship and the chosen stars as a guide for observation.

Application (4)

At Z.T. 0130 December $16^{\text {th }} ; 1990$.
Ship was in DR Position ($37^{\circ} 40^{`} .0 \mathrm{~S}$; $160^{\circ} 50^{`} .0 \mathrm{E}$)

Steaming Speed	19.0 knots
Steering True course	$249^{\circ} .0$

Calculate:

- Choose and name (7) suitable stars for observation at the morning twilight; referring to the Air Navigation Tables as a guide, giving their predicted altitudes \& bearings (to the nearest degree).
- Draw a figure showing the horizon, true course of the ship and the chosen stars as a guide for observation.

Application (5)

At Z.T. 1450 December 17 ${ }^{\text {th }}$; 1990.
Ship was in DR Position ($38^{\circ} 32^{`} .0 \mathrm{~N} ; 154^{\circ} 48^{`} .0 \mathrm{E}$)

Steaming Speed	18.5 knots
Steering True course	$209^{\circ} .0$

Calculate:

- Choose and name (7) suitable stars for observation at the evening twilight; referring to the Air Navigation Tables as a guide, giving their predicted altitudes \& bearings (to the nearest degree).
- Draw a figure showing the horizon, true course of the ship and the chosen stars as a guide for observation.

ANSWERS:

Answer of Application (1)

Answer of Application (1)			
$\#$	Star Name	Altitude	True Bg.
1	\bullet Regulus	39°	011°
2	Spica	31°	079°
3	\star Acrux	54°	148°
4	Canopus	55°	229°
5	\bullet Regil	25°	280°
6	Betelgeuse	23°	300°
7	Procyon	40°	323°

Answer of Application (2)			
$\#$	Star Name	Altitude	True Bg.
1	\star Hamal	28°	010°
2	Aldebaran	20°	048°
3	Rigel	31°	075°
4	\star Canopus	38°	132°
5	Peacock	39°	219°
6	\star Fomalhaut	58°	273°
7	Alpheratz	20°	341°

Answer of Application (3)			
$\#$	Star Name	Altitude	True Bg.
1	Aldebaran	21°	047°
2	Alpheratz	20°	340°
3	Canopus	40°	132°
4	Fomalhaut	57°	272°
5	Hamal	29°	008°
6	Peacock	38°	218°
7	Regil	32°	074°

Answer of Application (4)			
$\#$	Star Name	Altitude	True Bg.
1	Acrux	54°	148°
2	Betelgeuse	22°	299°
3	Canopus	54°	230°
4	Procyon	39°	321°
5	\bullet Regil	25°	279°
6	\star Regulus	39°	010°
7	Spica	32°	078°

Answer of Application (5)			
$\#$	Star Name	Altitude	True Bg.
1	Altair	40°	247°
2	\star Capella	23°	049°
3	Diphda	29°	151°
4	\diamond Fomalhaut	22°	179°
5	Hamal	47°	096°
6	Kochab	29°	344°
7	\diamond Vega	41°	292°

7) Meridian Passage

To apply this software programs you can proceed without any previous calculations.
The software program is designed to obtain:

- GMT of meridian passage of true sun to the nearest second.
- DR position corresponding to GMT of meridian passage of true sun.

The screen of the software program is given below

Solved Application

At Z.T. 0830; August $24^{\text {th }} ; 1990$
Ship was in D.R. position ($40^{\circ} 45^{\circ} .0 \mathrm{~S}$; $159^{\circ} 42^{\circ} .0 \mathrm{E}$)

True Co. to Steer	113°
Speed	19.5 knots

Calculate the following:

1) G.M.T. of meridian passage of the True Sun to the nearest second.
2) DR at G.M.T. of meridian passage

Manual Calculations:

To find G.M.T. of Noon:

Z.T.	0830 Aug. 24 ${ }^{\text {th }}$
Z.N. (-)	11
G.D.	2130 Aug. 23 ${ }^{\text {rd }}$

$1^{\text {st }}$ Approximation

L.M.T. \pm Long. $_{1}$ w/ E	1203 Aug. 24 $4^{\text {th }}$
G.M.T. 1039	
G.D.	0124 Aug. 24 ${ }^{\text {th }}$
Interval	2130 Aug. 23 ${ }^{\text {rd }}$

Distance Run $=(03 \mathrm{~h} 54 \mathrm{~m}) \times 19.5 \mathrm{k}=76.1 \mathbf{M}$
True Course to steer $\mathbf{1 1 3 . 0}$

d. Lat.	dep.	M. latitude	d. Long.
$29^{{fbeb43e58-130f-4a64-b877-4a677bbe6e1f}} .1 \mathrm{E}$	$41^{\circ} .0$	$92^{{f70c141a5-c545-4919-ab31-85b8468dbbfc} .4 \mathrm{~W}$	
$\begin{array}{ll} \mathrm{DR}_{2} & \begin{array}{l} \text { Lat. } \\ \text { d. Lat. } \end{array} \end{array}$	$\begin{array}{r} 41^{\circ} 14^{`} .7 \mathrm{~S} \\ 0^{\circ} .8 \mathrm{~N} \end{array}$ & Long. d. Long. & $\begin{array}{r} 161^{\circ} 14^{\circ} .8 \mathrm{E} \\ 2.4 \mathrm{~W} \end{array}$ \hline DR_{3} Lat. & $41^{\circ} 13^{\prime} .9 \mathrm{~S}$ & Long. & $161^{\circ} 12 ` .4 \mathrm{E}$		

Accurate GMT of Noon sight

LHA	$360^{\circ} 00{ }^{\text {c }} 0$		
\pm Long. w/ E ()	$161^{\circ} 12^{\circ} .4$		
GHA	$198^{\circ} 47^{\circ} .6$		
Tab. GHA	$194^{\circ} 22^{\circ} .0$	\rightarrow	01h
Incr.	$4^{\circ} 25^{\prime} .6$	\rightarrow	17m 42s
GMT	01h 17m 42s	24 ${ }^{\text {th }}$	

Procedure of application
A. Application of the soft-ware program;

MERIDIAN PASSAGE

B. Results obtained:

DR Lat.	$41^{\circ} 13^{`} .9 \mathrm{~S}$
DR Long.	$161^{\circ} 12.2 \mathrm{E}$
GMT	01 l 17 m 44 s

TRAINING APPLICATIONS

Application (1)
At Z.T. 0845; April 2 ${ }^{\text {nd; }} 1990$
Ship was in D.R. position ($38^{\circ} 40^{`} .0 \mathrm{~N} ; 61^{\circ} 49^{`} .0 \mathrm{E}$)
True Co. to Steer $033^{\circ} .0$
Speed 17.0knots
Calculate the following:

1) G.M.T. of meridian passage of the True Sun to the nearest second.
2) DR at G.M.T. of meridian passage

Application (2)

At Z.T. 0915; October 15 ${ }^{\text {th }} ; 1990$
Ship was in D.R. position ($43^{\circ} 25^{`} .0 \mathrm{~S}$; $169^{\circ} 40^{`} .0 \mathrm{E}$)
True Co. to Steer $\quad 144^{\circ} .0$
Speed 15.0 knots
Calculate the following:

1) G.M.T. of meridian passage of the True Sun to the nearest second.
2) DR at G.M.T. of meridian passage

Application (3)
At Z.T. 0840; December $16^{\text {th }} ; 1990$
Ship was in D.R. position ($30^{\circ} 38^{`} .0 \mathrm{~S}$; $109^{\circ} 22^{`} .0 \mathrm{~W}$)
True Co. to Steer 131°
Speed 18.5 knots
Calculate the following:

1) G.M.T. of meridian passage of the True Sun to the nearest second.
2) DR at G.M.T. of meridian passage.

Application (4)
At Z.T. 0910; Jun. 17 ${ }^{\text {th }} ; 1990$
Ship was in D.R. position ($00^{\circ} 05^{`} .0 \mathrm{~S} ; 48^{\circ} 43^{`} .0 \mathrm{~W}$)
True Co. to Steer $\quad 208^{\circ} .0$
Speed 14.0 knots
Calculate the following:

1) G.M.T. of meridian passage of the True Sun to the nearest second.
2) DR at G.M.T. of meridian passage

Application (5)
At Z.T. 0935; February $17^{\text {th }} ; 1990$
Ship was in D.R. position ($25^{\circ} 45^{`} .0 \mathrm{~S}$; $158^{\circ} 40^{`} .0 \mathrm{E}$)
True Co. to Steer $\quad 105^{\circ} .0$ Speed 19.0 knots

Calculate the following:

1) G.M.T. of meridian passage of the True Sun to the nearest second.
2) DR at G.M.T. of meridian passage

ANSWERS

Application No (1)
MERIDIAN PASSAGE

$39^{\circ} 24.9 \mathrm{~N}$
$62^{\circ} 26.5$ E
Meridian GMT is: 7H 53M 56S
Submit
Results obtained:

DR Lat.	$39^{\circ} 24^{\circ} .9 \mathrm{~N}$
DR Long.	$62^{\circ} 26^{\circ} .5 \mathrm{E}$
GMT	07 h 53 m 56 s

Application No (2)

MERIDIAN PASSAGE

Zone Time Hour	Min	
9	15	
Date Day	Month	Year
15	10	1990
D.R.Lat		
43	25	5 -
D.R.Long		
169	40	E -
True Course		
144		
Speed		

$48^{\circ} 42.6 S$
$175^{\circ} 12.7$ E
Meridian GMT is: $\mathbf{0 H} 5 \mathrm{M}$ 8S
Submit

Results obtained:
DR Lat. $48^{\circ} 42^{`} .6$ S
DR Long. $\quad 175^{\circ} 12^{`} .7 \mathrm{E}$
GMT 0h 05m 08s

Application No (3)

MERIDIAN PASSAGE

Zone Time Hour	Min		
8	40		
Date			
16	12	1990	
D.R.Lat			
30	38	5 -	
D.R.Long			
109	22	W-	
True Course			
131			
Speed			
18.5			
$31^{\circ} \mathbf{2 0 . 4} \mathrm{S}$			
$108{ }^{\circ} 25.2 \mathrm{~W}$			
Meridian	M $25 S$		Submit

Results obtained:
DR Lat. $\quad 31^{\circ} 20^{\circ} .4$ S
DR Long. $\quad 108^{\circ} 25^{`} .2 \mathrm{~W}$
GMT 19h 09m 25s

Application No (4)

MERIDIAN PASSAGE

Results obtained:
DR Lat. $\quad 00^{\circ} 43^{`} .5 \mathrm{~S}$
DR Long. $49^{\circ} 03^{`} .5 \mathrm{~W}$
GMT 15h 17m 05s

Application No (5)

MERIDIAN PASSAGE

Zone Time Hour	Min		
9	35		
Date			
Day	Month	Year	
17	2	1990	
D.R.Lat			
25	45	$5 \quad$	
D.R.Long			
158	40	E -	
True Course			
105			
Speed			
19			
$25^{\circ} 59.8$ S			
$159^{\circ} 41.3 \mathrm{E}$			
Meridian GMT is: $\mathbf{1 H} \mathbf{3 5 M} 195$			Submit

Results obtained:
DR Lat. $\quad 25^{\circ} 59^{`} .8 \mathrm{~S}$
DR Long. $\quad 159^{\circ} 41^{\prime} .3$ E
GMT 1h 35m 19s

GROUP (3)

BASIC CELESTIAL NAVIGATION ACTIVITIES

- Individual Sun Sight
- Calculated observed Position (Sun Run Sun)
- Individual Star Sight
- Most Probable Observed Position (Universal Method)
- Most Probable Observed Position (Egyptian Method)

C. GROUP (3)

8) Sun Sight

To apply this software program you must:

- Calculate $[\underline{G H A} \text { sum }]_{\text {and }}[\underline{D e c .}$ sun] at GMT.
- Extract semi-diameter of the sun [SD] from daily page of nautical almanac tables.

The software program is designed to obtain Intercept $\&$ True Bearing of the sun.
The screen of the software program is given below

SOLVED APPLICATION

At Z.T. 1455 on October $14^{\text {th }} ; 1990$.
Ship was in D.R. position ($40^{\circ} 15^{`} .0 \mathrm{~S} ; 161^{\circ} 00^{`} .0 \mathrm{~W}$).

- I.E. 1 . 2 off the arc
- Ht. of eye 12.7 m
- Ch. error 3 m 11s fast

Lower Limb of the Sun was observed as follows:

- Ch.Time
01h 51m 50s
- Sext.alt.
$35^{\circ} 35^{\circ} .0$

Find the elements of the position line by Intercept method.

Manual Calculations:

$1^{\text {st }}$ Step: To adjust time of G.M.T.

Z.T.	1455 Oct. 14 ${ }^{\text {th }}$
Z.N.	$11(+)$
G.D.	0155 Oct. 15

Ch. Time	01h 51m 50s		
Ch. Error (-)			03m 11s
:---:			
G.M.T.			

$2^{\text {nd }}$ Step: To Extract L.H.A. \& Dec.

G.H.A. Incr.	$\begin{array}{rr} 198^{\circ} & 30^{{fb96a7ff0-3b57-455a-97c1-a3d7e03cfd9e}} .8 \end{array}$	Dec.* d ${ }^{\text {c }}$	$\begin{array}{rl} 8^{\circ} 21^{{f343fd347-9321-4f59-980f-7d67b1bac649}} .7 & (+) \end{array}$
G.H.A.	$210^{\circ} 40^{{fcf3700ff-fb3a-44bd-aa01-133913912a89}} .7\right) \operatorname{Cos}\left(40^{\circ} 15^{{f81e43264-c0b7-4517-8688-d55c99f3496a}} .9\right)+\operatorname{Sin}\left(40^{\circ} 15^{{f8597518a-31c5-433f-adce-91c791cb306a}} .9\right)$ $\operatorname{Cos}(C Z D)=0.48862+0.09340=0.58261 \rightarrow \mathrm{CZD}=54^{\circ} 21^{{fe893b4cb-6717-4d1f-b202-62d52a1d0c79}} .0$		
I.E.	$1 {ff56a5c09-2119-4ee2-b2f2-d76e30e84f01}} .2$		
Dip	$6^{{f1ab92e9d-24e6-40f4-9b60-e61357b352b2}} .9$		
Corr.	$14^{{f8bddc288-ee6b-42e0-bf0d-f12630e0d163}} .8$		
90°			
T.Z.D.	$54^{\circ} 15^{{f9895630e-c2e5-4fcb-a08c-150a161078db}} .9$		
Intercept	$\mathbf{6} .7$		

$5^{\text {th }}$ Step: To find True Bearing

L.H.A.	49°	$40^{\circ} .7$	A	0.718 N
Lat.	$40^{\circ} 15^{\circ} .0 \mathrm{~S}$	B	0.193 S	
Dec.	8°	$21^{\circ} .9 \mathrm{~S}$	C	0.525 N
			Az.	$\mathrm{N} 68^{\circ} .1 \mathrm{~W}$
		T. Bg.	$\mathbf{2 9 1}^{\circ} . \mathbf{8}$	

To apply the software program you must:

- Calculate [GHA sun] and [Dec. sun] at GMT.
- Extract semi-diameter of the sun [SD] from daily page of nautical almanac tables. The software program is designed to obtain Intercept $\&$ True Bearing of the sun. The screen of the software program is given below

Procedure of application

A. Data extracted from NA tables

G.H.A.	$198^{\circ} 30.9$	Dec.	$8^{\circ} 21^{\prime} .2 \mathrm{~S}$	
Incr.	$12^{\circ} 09{ }^{\circ} .8$	d^{c} (+)	$0{ }^{0} .7$	
G.H.A.	$210^{\circ} 40^{\circ} .7$	C. Dec.	$8^{\circ} 21^{\circ} .9 \mathrm{~S}$	S.D. $16^{\prime} .1$

B. Application of the soft-ware program;

TRAINING APPLICATIONS

Question (1)

At Z.T. 1520 on April 2 ${ }^{\text {nd. }}$ 1990;
Ship was in D.R. position ($51^{\circ} 15^{`} .0 \mathrm{~N} ; 174^{\circ} 30^{`} .0 \mathrm{~W}$).

- I.E. 1 ․ 5 on the arc
- Ht. of eye 15.5 m
- Ch. Error 3m 13s slow

Lower Limb of the Sun was observed as follows:

- Ch.Time 03h 18m 27s
- Sext.alt. $25^{\circ} 18$. 5

Find the elements of the position line by Intercept method.

Question (2)

At Z.T. 1250 on February $16^{\text {th }}$; 1990;
Ship was in D.R. position ($51^{\circ} 10^{`} .0 \mathrm{~N} ; 174^{\circ} 40^{`} .0 \mathrm{~W}$).

- I.E. 1`. 5 off the arc
- Ht. of eye 16.0 m
- Ch. Error $2 m$ 41s slow

Lower Limb of the Sun was observed as follows:

- Ch.Time 0 h 56 m 03s
- Sext.alt. $25^{\circ} \quad 05^{`} .2$

Find the elements of the position line by Intercept method.

Question (3)
At Z.T. 1550 on June $16^{\text {th }} ; 1990$;
Ship was in D.R. position ($51^{\circ} 05^{`} .0 \mathrm{~N}$; $174^{\circ} 35^{`} .0 \mathrm{E}$).

- I.E. 1 . 7 on the arc
- Ht. of eye 17.3 m
- Ch. Error 3m 55s fast

Lower Limb of the Sun was observed as follows:

- Ch.Time 03h 45m 50s
- Sext.alt. $42^{\circ} 40^{`} .0$

Find the elements of the position line by Intercept method.

Question (4)

At Z.T. 1440 on August 24 ${ }^{\text {th }}$; 1990;
Ship was in D.R. position ($31^{\circ} 15^{`} .0 \mathrm{~S} ; 179^{\circ} 10^{`} .0 \mathrm{~W}$).

- I.E. 1 . 8 on the arc
- Ht. of eye 17.0 m
- Ch. Error 4m 13s fast

Lower Limb of the Sun was observed as follows:

- Ch.Time 02h 46m 53s
- Sext.alt. $32^{\circ} \quad 25^{`} .0$

Find the elements of the position line by Intercept method.

Question (5)

At Z.T. 1350 on December $16^{\text {th }}$; 1990;
Ship was in D.R. position ($41^{\circ} 07^{`} .0 \mathrm{~N} ; 034^{\circ} 50^{`} .0 \mathrm{~W}$).

- I.E. 1 . 6 off the arc
- Ht. of eye 15.0 m
- Ch. Error $5 m$ 18s fast

Lower Limb of the Sun was observed as follows:

- Ch.Time 03h 51m 28s
- Sext.alt. $22^{\circ} \quad 10^{`} .0$

Find the elements of the position line by Intercept method.

ANSWERS:

Application (1)

SUN SIGHT

GMT of Sight				
3	21	40		
Sextant Alt				
25	18.5	Limb	Lower	\bullet
GHA at GMT				
229	33.2			
Dec at GMT				
5	10.8	N -		
Index error of the Sext				
-1.5				
Hieght of eye				
15.5				
SD				
16				
D.R.Lat				
51	15	N		
D.R.Long				
174	30	W -		

Int $=0^{\circ} \quad 5.5^{\prime} \mathrm{T}$
Submit
Answer:

Intercept	$5 ` .5 \mathrm{~T}$
T. Bg.	$244^{\circ} .6$

Application (2)

SUN SIGHT

Int $=0^{\circ} \quad 8.4^{\prime} \mathrm{T}$
$\mathrm{TBg}=197.9^{\circ}$
Submit
Answer:

Intercept	$8 ` .4 \mathrm{~T}$
T. Bg.	$197^{\circ} .9$

Application (3)

SUN SIGHT				
GMT of Sight				
3	41	55		
Sextant Alt				
42	40	Limb		\checkmark
GHA at GMT				
235	21			
Dec at GMT				
23	20.3	\cdots		
Index error of the Sext				
-1.7				
Hieght of eye				
17.3				
SD				
15.7				
D.R.Lat				
51	5	\cdots		
D.R.Long				
174	35	E -		

Int $=0^{\circ} \quad 2.7^{\prime} \mathrm{A}$
$\mathrm{TBg}=253.30$
Submit
Answer:
Intercept 2`.7 A
T. Bg. $\quad 253^{\circ} .3$

Application (4)

SUN SIGHT

Int $=0^{\circ} \quad 4.5^{\prime} \mathrm{T}$
Submit
Answer:

Intercept	$4 ` .5 \mathrm{~T}$
T. Bg.	$310^{\circ} .3$

Application (5)

SUN SIGHT

Answer:
Intercept 8`.5 T
T. Bg. $202^{\circ} .6$

9) Sun Run Sun

To apply this software program you can proceed without any previous calculations. This is clear from the screen of the program below, because [GHA sun] and [Dec. sun] at GMT ${ }_{1}$ of the first sun sight and at GMT_{2} of the second sun sight were calculated before when each sight was solved separately.

The software program is designed to obtain; the fixed position at GMT of the $2^{\text {nd }}$ sun sight as follows;

- Application (1):

Make run from before noon sun sight to meridian sun sight to obtain fixed position at noon.

- Application (2):

Make run from Meridian sun sight to afternoon sun sight to obtain fixed position at the afternoon sight.

The screen of the software program is given below

Solved Application

Z. T. 1312 of October $14^{\text {th }} ; 1990$,

Ship was in DR position ($34^{\circ} 53^{`} .0 \mathrm{~S} ; 32^{\circ} 25^{`} .0 \mathrm{~W}$).

T. Co.	$341^{\circ} .0$
Speed	18 knots
I. E.	2.1 Off the arc
Ht. of eye	10.5 m
Ch. Error	$1 \mathrm{~m} \mathrm{19s}$ slow

The $1^{\text {st }}$ Sight of Sun`s lower limb was observed as follows: Ch. Time 3h 12m 05s Sext. Alt. \(57^{\circ} 50^{`} .0\)
The $2^{\text {nd }}$ sight of Sun `s lower limb was observed as follows: Ch. Time \(\quad 5 \mathrm{~h} 20 \mathrm{~m}\) 31s Sext. Alt. \(36^{\circ} 10^{`} .0\)
Find the observed position at the time of the $2^{\text {nd }}$ observation.

Manual Calculations:

A. Solution of the $1^{\text {st }}$ Sun sight:
$1^{\text {st }}$ Step: To Adjust GMT:

| Ch. Time ${ }_{1}$ | 03 12 05
 01 19 |
| :--- | ---: | :--- |
| Ch. Error $(+)$ | 15h 13m 24s Oct. $14^{\text {th }}$ |

$2^{\text {nd }}$ Step: To Extract LHA and Dec.

GHA	$48^{\circ} 29^{\prime} .5$	Dec	$8^{\circ} 12^{{fd82ffcac-1a29-4b97-b769-8cfa3a5f266c} .5$	C. Dec.	$8^{\circ} 12^{`} .2 \mathrm{~S}$
Long (-)	$32^{\circ} 25^{\circ} .0$				
LHA	$19^{\circ} 25^{\prime} .5$				

$3^{\text {rd }}$ Step: To Calculate C.Z.D:

```
Cos(CZD) = Cos(LHA) Cos(Lat.) Cos(Dec.) +Sin (Lat.) Sin (Dec.)
Cos(CZD) = Cos(19` 25`.5) Cos(34'53`.0) Cos (8` 12`.2) +Sin (34'53`.0) Sin (8` 12`.2)
Cos(CZD) = 0.76571 + 0.08160 = 0.84731 }->\textrm{CZD}=3\mp@subsup{2}{}{\circ}0\mp@subsup{4}{}{`}.
```

$4^{\text {th }}$ Step: To Correct Sextant Altitude and find Intercept:

5th Step: To Find True Bearing

LHA $19^{\circ} 25^{\circ} .5$
Lat. $34^{\circ} 53^{\prime} .0 \mathrm{~S}$
Dec $8^{\circ} 12^{\prime} .2 \mathrm{~S}$

A	1.977 N
B	0.433 S
C	1.544 N
Az.	$\mathrm{N} 38^{\circ} .3 \mathrm{~W}$
T. Bg.	$\mathbf{3 2 1}^{\circ} . \mathbf{. 7}^{2}$

B. Calculation of the $2^{\text {nd }} D R$ Position:

Ch. Time 2 Ch. Error +	$05 \mathrm{~h} \mathrm{20m} \mathrm{31s}$ $01 \mathrm{~m} \mathrm{19s}$	The GMT of the $2^{\text {nd }}$ Sun sight must be ahead of the $1^{\text {st }}$ Sun sight; for this we add 12h to G.M.T.2
G.M.T. 2	$17 \mathrm{~h} \mathrm{21m} \mathrm{50s} \mathrm{Oct} 14$.	

G.M.T. 2	17 h 21 m 50s Oct. 14 $4^{\text {th }}$
G.M.T. 1	15 h 13 m 24s Oct. 14 $4^{\text {th }}$
Interval	02 h 08 m 26 s

Distance Run $=(02 \mathrm{~h} 08 \mathrm{~m} 26 \mathrm{~s}) \times 18.0 \mathrm{k}=38.5 \mathrm{M}$

Distance	True Co.	d. Lat.		dep.				
		N	S	E	W			
6.6 T	$321^{\circ} .7$	5.2			4.1			
38.5	$341^{\circ} .0$	36.4			12.5			
							$41^{{f8f182950-4ebb-49f4-824e-f2f04f76aa1d}} .6 \mathrm{~W}$	

d. Long. $=$ dep. $/ \cos (\mathrm{m}$. Lat. $)=16^{`} .6 / \cos \left(34^{\circ} .5\right) \rightarrow$ where m. Lat. $=\left[\left(34^{\circ} 53^{\circ} .0+34^{\circ} 11^{`} .4\right) / 2\right]$
d. Long. $=20^{`} .1 \mathrm{~W}$

| DR_{1} Position | Lat. | $34^{\circ} 53^{{f6f9dbd9d-029e-44eb-95bd-a9a5d66e65d7}} .0 \mathrm{~W}$ |
| :--- | :--- | ---: | :--- | ---: |
| | d. Lat. | $40^{{f92f241fc-5067-4ded-aae2-8e37308fb9b4}} . \mathbf{1} \mathbf{~ W}$ |

C. Solution of the $2^{\text {nd }}$ Sun sight:

GMT: 17h 21m 50s Oct. $14^{\text {th }}$
$\mathrm{DR}_{2}:\left(34^{\circ} 11^{`} .4 \mathrm{~S} ; 32^{\circ} 45^{`} .1 \mathrm{~W}\right)$
$2^{\text {nd }}$ Step: To Extract LHA and Dec.

GHA	$78^{\circ} 29^{{ffe07838d-8f74-4388-ac96-a78b29ebdce8}} .8 \mathrm{~S}$			
Incr.	5°	$27^{{fe6c648a1-41a2-4157-94a6-abef1861b1bf}} .3$		
GHA	$83^{\circ} 57^{{f86cd7189-1c0f-46fa-8827-47e13e0841d3}} .1 \mathrm{~S}$			
Long $(-)$	32°	$45^{`} .1$		

$3^{\text {rd }}$ Step: To Calculate C.Z.D:
$\operatorname{Cos}(\mathrm{CZD})=\operatorname{Cos}(\mathrm{LHA}) \operatorname{Cos}($ Lat. $) \operatorname{Cos}(\mathrm{Dec})+.\operatorname{Sin}($ Lat. $)$ Sin (Dec.)
$\operatorname{Cos}(\mathrm{CZD})=\operatorname{Cos}\left(51^{\circ} 12^{\circ} .1\right) \operatorname{Cos}\left(34^{\circ} 11^{`} .4\right) \operatorname{Cos}\left(8^{\circ} 14^{\circ} .1\right)+\operatorname{Sin}\left(34^{\circ} 11^{`} .4\right) \operatorname{Sin}\left(8^{\circ} 14^{\circ} .1\right)$
$\operatorname{Cos}(C Z D)=0.51295+0.08049=0.59344 \rightarrow \mathrm{CZD}=53^{\circ} 35^{\circ} .9$
$4^{\text {th }}$ Step: To Correct Sextant Altitude and find Intercept:

Sext. alt.	$36^{\circ} 10^{\circ} .0$
IE (+)	2 '. 1
Obs. alt.	$36^{\circ} 12^{\circ} .1$
Dip (-)	5.7
App. alt.	$36^{\circ} 06^{\circ} .4$
Corrn ${ }^{\text {(}}$ +	14.9
True alt.	$36^{\circ} 21^{1} .3$
TZD	$53^{\circ} 38{ }^{\circ} .7$
CZD	$53^{\circ} 35.9$
Inter.	2.8 A

5th Step: To Find True Bearing:

LHA $51^{\circ} 12^{{ff69d4332-90a6-4953-b858-218909aa6b55}} .1 \mathrm{~S}$	C	0.360 N
	Az.	N $73{ }^{\circ} .4 \mathrm{~W}$
	T. Bg.	$286{ }^{\circ} .6$

D. Plotting and Obtaining the Observed Position:

From Plotting Sheet:

| DR_{2} Position | Lat. | $34^{\circ} 11^{{fa9c0b1d6-b34d-4b28-8773-045cc33a2f7b}} .1 \mathrm{~W}$ |
| :--- | :--- | :---: | :--- | :---: |
| | d. Lat. | $03^{{f83444cf9-142d-4fcf-8fbe-40f5631eced9}} .8 \mathrm{E}$ |
| Fix. Position | Lat. | $34^{\circ} 08^{{f8228a7fd-1969-40ec-9e01-50c3b22af4e5}} .3 \mathrm{~W}$ |

Procedure of application

Data extracted from NA tables

$G M T_{1}: 15 \mathrm{~h} 13 \mathrm{~m} 24 \mathrm{~s}$ Oct. $14^{\text {th }}$

G.H.A. Incr.	$\begin{array}{rr} 48^{\circ} & 29^{{f845c88eb-1d7f-4e7c-bdaa-f1ebb403504b}} .0 \end{array}$	Dec. d ${ }^{\text {c }}$	$\begin{aligned} & 8^{\circ} 12^{{ff4d75a0a-6545-4473-bc41-d27bee802435}} .2 \end{aligned}$	
G.H.A.	$51^{\circ} 50 {f72db1a94-ca21-4a40-97dc-c27831291661}} .2 \mathrm{~S}$	S.D. 16		

$G M T_{2}: 17 \mathrm{~h} 21 \mathrm{~m} 50 \mathrm{~s}$ Oct. $14^{\text {th }}$

Application of Software;

ANSWER;

Calculated Observed Position ($34^{\circ} 08^{`} .1 \mathrm{~S}$; $32^{\circ} 40^{`} .3 \mathrm{~W}$)

TRAINING APPLICATIONS

Application (1)

Z. T. 1312 of June $16^{\text {th }} ; 1990$,

Ship was in DR position ($34^{\circ} 53^{`} .7 \mathrm{~N} ; 32^{\circ} 25^{`} .3 \mathrm{E}$).

T. Co.	$200^{\circ} .0$
Speed	18 knots

Speed 18 knots
I. E. Nil

Ht. of eye 10.1 m
Ch. Error 0m 14s slow
The $1^{\text {st }}$ Sight of Sun`s lower limb was observed as follows:
Ch. Time 11 h 12 m 05 s

Sext. Alt. $68^{\circ} \quad 52^{`} .0$
The $2^{\text {nd }}$ sight of Sun `s lower limb was observed as follows: Ch. Time \(\quad 2 \mathrm{~h} 00 \mathrm{~m}\) 50s Sext. Alt. \(35^{\circ} 22^{`} .3\)
Find the observed position at the time of the $2^{\text {nd }}$ observation.

Application (2)
Z. T. 1112 of October $14^{\text {th }} ; 1990$, Ship was in DR position ($34^{\circ} 53^{`} .0 \mathrm{~S}$; $179^{\circ} 39^{`} .0 \mathrm{~W}$).

T. Co.	$326^{\circ} .0$
Speed	18.3 knots
I. E.	$2 ` .6$ off the arc
Ht. of eye	14.5 m
Ch. Error	3 m 39 s slow

The $1^{\text {st }}$ Sight of Sun`s lower limb was observed as follows: Ch. Time \(\quad 11 \mathrm{~h} 02 \mathrm{~m} 45 \mathrm{~s}\) Sext. Alt. \(61^{\circ} 45^{`} .0\)
The $2^{\text {nd }}$ sight of Sun `s lower limb was observed as follows: Ch. Time \(1 \mathrm{~h} \quad 50 \mathrm{~m}\) 10s Sext. Alt. \(50^{\circ} \quad 50^{`} .0\)
Find the observed position at the time of the $2^{\text {nd }}$ observation.

Application (3)
Z. T. 1115 of April $2^{\text {nd }} ; 1990$,

Ship was in DR position ($32^{\circ} 24^{`} .0 \mathrm{~S}$; $179^{\circ} 44^{`} .0 \mathrm{E}$).
T. Co. $059^{\circ} .0$

Speed 17.7 knots
I. E. $\quad 2 ` .6$ on the arc

Ht. of eye $\quad 17.4$ m
Ch. Error $2 m 39 \mathrm{~s}$ fast
The $1^{\text {st }}$ Sight of Sun`s lower limb was observed as follows: Ch. Time 11h 20m 35s Sext. Alt. \(51^{\circ} 13\). 9 The \(2^{\text {nd }}\) sight of Sun `s lower limb was observed as follows:
Ch. Time 2 h 18 m 45s
Sext. Alt. $41^{\circ} 177^{\prime} .2$
Find the observed position at the time of the $2^{\text {nd }}$ observation.

Application (4)
Z.T. 1055 June $16^{\text {th }} ; 1990$

Ship was in DR position ($39^{\circ} 20^{`} .0 \mathrm{~N} ; 179^{\circ} 38^{`} .0 \mathrm{~W}$);
Ship was steaming as follows:
True course to steer $\quad 282^{\circ} .0$
Speed
19.5 k

Chronometer error 01 m 19s fast
Index error 2`.6 off the arc
Height of eye
15.4 m
$1^{\text {st }}$ sun sight at Ch. Time $\mathbf{1 0 h} 58 \mathrm{~m} 40$ s when observed gave :
Sextant alt. $69^{\circ} 05^{\circ} .0$ (L.L.)
$2^{\text {nd }}$ sun sight at Ch. Time 01 h 22 m 40 s when observed gave:
Sextant alt. $66^{\circ} 45^{\circ} .0$ (L.L.)
Find the observed position at the time of the $2^{\text {nd }}$ sight.

Application (5)
Z.T. 1055 January $2^{\text {nd }} ; 1990$

Ship was in DR position ($43^{\circ} 40^{`} .0 \mathrm{~S} ; 179^{\circ} 54^{`} .0 \mathrm{E}$);
Ship was steaming as follows:
True course to steer $077^{\circ} .0$
Speed
20.7 k

Chronometer error 01m 49s slow
Index error $\quad 2^{`} .0$ off the arc
Height of eye $\quad 18.4 \mathrm{~m}$
$1^{\text {st }}$ sun sight at Ch. Time 10 h 58 m 40 s when observed gave:
Sextant alt. $65^{\circ} 15^{`} .0$ (L.L.)
$2^{\text {nd }}$ sun sight at Ch. Time 01 h 22 m 40 s when observed gave: Sextant alt. $63^{\circ} 02^{`} .9$ (L.L.)
Find the observed position at the time of the $2^{\text {nd }}$ sight.

ANSWERS:

ANSWER: Fixed Position ($34^{\circ} 15^{`} .5 \mathrm{~N} ; 31^{\circ} 45^{`} .1 \mathrm{E}$)

ANSWER: Fixed Position ($34^{\circ} 16^{`} .6 \mathrm{~S} ; 179^{\circ} 45^{`} .2 \mathrm{E}$)

Application No (3) SUN RUN SUN

ANSWER: Fixed Position ($31^{\circ} 50^{`} .2 \mathrm{~S} ; 179^{\circ} 26^{`} .8 \mathrm{~W}$)

Application No (4)

ANSWER: Fixed Position ($39^{\circ} 32^{`} .2 \mathrm{~N} ; 179^{\circ} 17^{`} .5 \mathrm{E}$)

ANSWER: Fixed Position ($43^{\circ} 25^{`} .5 \mathrm{~S} ; 179^{\circ} 14^{`} .7 \mathrm{~W}$)

10) Star Sight

To apply this software program you must:

- Calculate $\left[\underline{G H A}{\underset{s t a r}{ }]_{\text {at }} \text { GMT in-advance. }}_{\text {- }}\right.$
- Extract [Dec.star].

The software program is designed to obtain Intercept \& True Bearing of a star.
The screen of the software program is given below

Solved Application

At Z.T. 0602 on January $3^{\text {rd. }} 1990$ Ship was in D.R. position ($41^{\circ} 10^{`} .0 \mathrm{~N} ; 171^{\circ} 05^{`} .0 \mathrm{E}$).

- I.E. $2 ` .2$ on the arc
- Ht. of eye 15 m
- Ch. error
nil
Star Regulus was observed as follows:
- Ch.Time 6h 57m 45s
- Sext.alt.
$40^{\circ} \quad 47^{\circ} .1$
Find the elements of the position line by Intercept method.

Manual Calculations:

$1^{\text {st }}$ Step: To Adjust Time Of G.M.T.

$\begin{aligned} & \text { Z.T. } \\ & \text { Z.N. } \end{aligned}$	$\begin{aligned} & 0602 \text { Jan. } 3^{\mathrm{rd}} \\ & -11 \end{aligned}$
G.D.	1902 Jan. $2^{\text {nd }}$
Ch. Time	6h 57m 45s
Ch. Error	000
G.M.T.	18h 57m 45s Jan. $2^{\text {nd }}$

$4^{\text {th }}$ Step: To Correct Sextant Altitude

Sext alt	40°	$47^{{fd9acd769-f6a8-492a-b7c2-a714302d5dec}} .2$
Obs. Alt	40°	$44^{{fb50e679a-d6d0-4fe9-91b3-6f19067d266d} .8$
App alt	40°	$38^{{fddacb14c-614b-4393-894e-73741773299f} .1$
T. alt	40°	$37^{{f0daf2ca6-df90-4e58-be5e-e4b708afbcfc}} .0$
C.Z.D.	49°	$21^{{f5303cc78-1cd6-4ade-886c-a18d489b3422} . 1 ~ A}$}

$5^{\text {th }}$ Step: To Find True Bearing

L.H.A.	045°	$42^{{fdf9af3fc-0481-4f89-ba47-f4c09dd3d2d2}} .0$	B	0.297 N
Dec.	$\mathrm{N} 12^{\circ}$	$00^{\circ} .9$	C	0.556 S
				Az.
			T. Bg. $67^{\circ} .3 \mathrm{~W}$	

Procedure of application
A. Obtain GMT

GMT: 18h 57m 45s July $31^{\text {st }}$
B. Data extracted from NA tables

G.H.A.	012°	$06 {fbc63029d-8832-432a-8581-b8caf69fc04a}} .6$				
SHA	208°	$02^{{f5e25e905-0181-4772-86e7-70b8742afca7}} .9$				

C. Apply soft-ware program as follows;

$$
\begin{aligned}
& \text { Int }=0^{\circ} \quad 1.1^{\prime} \mathrm{A} \\
& \mathrm{TBg}=247.3^{\circ}
\end{aligned}
$$

Submit
Answer:
Intercept 1`.1 Away
True Bearing $247^{\circ} .3$

TRAINING APPLICATIONS

Application (1)

At ZT 0500 Oct. $15^{\text {th }} ; 1990$.
Ship was in D.R. position ($36^{\circ} 15^{`} .0 \mathrm{~S} ; 175^{\circ} 19^{`} .0 \mathrm{E}$).

I. E.	$1^{`} .7$	off the arc
Ht. of eye	$15.4 \quad \mathrm{~m}$	
Ch. Error	7 m	41 s slow

The star Aldebaran was observed as follows:

Ch.Time	05 h	05 m	06 s
Sext.alt.	31°	$13^{`} .4$	

Find the elements of the position line by Intercept method.

Application (2)

At ZT 0510 Oct.15 ${ }^{\text {th }} ; 1990$
Ship was in D.R. position ($36^{\circ} 20^{`} .0 \mathrm{~S} ; 175^{\circ} 20^{`} .0 \mathrm{E}$).

I. E.	$1 ` .7 \quad$ on the arc	
Ht. of eye	$16.0 \quad \mathrm{~m}$	
Ch. Error	8 m	44 s fast

The star Acamar was observed as follows:

Ch.Time	05 h	21 m	31 s
Sext.alt.	49°	$43^{\circ} .4$	

Find the elements of the position line by Intercept method.

Application (3)

At ZT 0505 Oct.15 ${ }^{\text {th }} ; 1990$
Ship was in D.R. position ($36^{\circ} 19^{`} .0 \mathrm{~S}$; $175^{\circ} 21^{`} .0 \mathrm{E}$).

I. E.	$2^{`} .4 \quad$ on the arc	
Ht. of eye	$16.1 \quad \mathrm{~m}$	
Ch. Error	9 m	33 s slow

The star Ankaa was observed as follows:

Ch.Time	05 h	03 m	14 s
Sext.alt.	23°	$37 ` .9$	

Find the elements of the position line by Intercept method.

Application (4)

At ZT 0512 Oct.15 ${ }^{\text {th }} ; 1990$
Ship was in D.R. position ($36^{\circ} 14^{`} .0 \mathrm{~S} ; 175^{\circ} 17^{`} .0$ E).

I. E.	$2^{`} .8$ on the arc	
Ht. of eye	16.8 m	
Ch. Error	9 m	45 s fast

The star Elnath was observed as follows:

Ch.Time	05 h	22 m	32 s
Sext.alt.	23°	$48^{`} .4$	

Find the elements of the position line by Intercept method.

Application (5)

At ZT 0515 Oct. $15^{\text {th }} ; 1990$
Ship was in D.R. position ($36^{\circ} 16^{`} .0 \mathrm{~S} ; 175^{\circ} 16^{`} .0 \mathrm{E}$).

| I. E. | $2 ` .5 \quad$ off the arc |
| :--- | :--- | :--- |
| Ht. of eye | $16.6 \quad \mathrm{~m}$ |
| Ch. Error | $3 \mathrm{~m} \quad 39 \mathrm{~s}$ fast |

The star Miaplacidus was observed as follows:

Ch.Time	05 h	16 m	26 s
Sext.alt.	49°	$50^{\circ} .8$	

Sext.alt. 49° 50`. 8
Find the elements of the position line by Intercept method.

ANSWERS:

Application (1)

STAR SIGHT		
GMT of Sight		47
17	12	
Sextant Alt		
31	13.4	
GHA at GMT		
212	19.8	
Dec at GMT		
16	29.7	$\mathrm{N} \quad \square$
Index error of the Sext		
1.7		
Hieght of eye		
15.4		
D.R.Lat		
36	15	$5 \quad \square$
D.R.Long		
175	19	E -

Int $=0^{0} \quad 1.6^{\prime} \mathrm{A}$
$\mathbf{T B g}=328.7^{\circ}$
Submit
Answer: Intercept 1`. 6 A
True Bearing $328^{\circ} .7$

Application (2)

STAR SIGHT		
GMT of Sight		
17	12	47
Sextant Alt		
49	43.4	
GHA at GMT		
$236 \quad 41.8$		
Dec at GMT		
40	20.2	$5 \quad \square$
Index error of the Sext		
-1.7		
Hieght of eye		
16		
D.R.Lat		
36	20	$5 \quad-$
D.R.Long		
175	20	E -

Int $=0^{\circ} \quad 0.9^{\prime} \mathrm{A}$
$\mathbf{T B g}=247.9^{\circ}$
Submit
Answer: Intercept 0`. 9 A
True Bearing $247^{\circ} .9$

Application (3)
STAR SIGHT

Int $=0^{\circ} \quad 2.2^{\prime} \mathrm{A}$
$\mathbf{T B g}=233.7^{\circ}$
Submit
Answer: Intercept 2 ․ 2 A
True Bearing $233^{\circ} .7$

Application (4)

STAR SIGHT

GMT of Sight		
17	12	47
Sextant Alt		
23	48.4	
GHA at GMT		
199	45	
Dec at GMT		
28	36.1	$\mathrm{N} \quad-$
Index error of the Sext		
-2.8		
Hieght of eye		
16.8		
D.R.Lat		
36	14	$5 \quad \square$
D.R.Long		
175	17	E \quad -

Int $=0^{\circ} \quad 2.3^{\prime} \mathrm{A}$
$\mathbf{T B g}=\mathbf{3 4 5 . 6}{ }^{\circ}$

Submit

Answer: Intercept 2`. 3 A
True Bearing $345^{\circ} .6$

Application (5)

Answer: Intercept 0`.7 A
True Bearing $159^{\circ} .0$

11) UNIVERSAL METHOD

To apply this software program you must:

- Extract $\underline{S H A} \& \underline{\text { Dec. for each star concerned. }}$
- Calculate $\underline{G H A} *=[G H A ~ \gamma+$ SHA $]$ for each star concerned at its GMT.

	Star (1)	Star (2)	Star (3)	Star (4)	Star (5)
GMT					
GHA γ					
$(+)$ Incr. γ					
$(+)$ S.H.A.					
GHA $*$					

- Arrange the data as given below to avoid mistakes of entry.

Co.	True Course
Sp.	Speed
I.E.	Index Error
H.E.	Height of eye
DRL	DR Latitude
DRG	DR Longitude
RT	Required time

Star	1	2	3	4	5
GMT					
Sext. Alt.					
GHA $*$					
Dec.					

The Input data are introduced in two steps;
Main data then press star number to introduce parameters of each one.

The following is the screen of the Universal Method software program:
Main Data

Information of Star № (i)

The software program is designed to obtain the most probable observed position MPOP; at the required time of fixing.

SOLVED APPLICATION

Z.T. 0407 January $2^{\text {nd }} ; 1990$ Ship was in DR position ($31^{\circ} 19^{`} .0 \mathrm{~S} ; 172^{\circ} 25^{`} .0 \mathrm{E}$).

- True Course to steer 333°
- Steaming Speed 16.5 k
- I.E. $\quad 1$ `. 3 on the arc
- Ht. of eye
19.0 m

The following are 7-Star sights; were observed at morning twilight as follows:

Star Name	G.M.T. Jan. $1^{\text {st }}$	Sext. Alt.
Arcturus	16h 51m 38s	$22^{\circ} 08{ }^{\circ} .5$
Antares	16h 54m 10s	$21^{\circ} 24^{\circ} .3$
Acrux	16h 57m 43s	$56^{\circ} 19^{\prime} .5$
Canopus	17h 00m 00s	$34^{\circ} 49^{\circ} .1$
Sirius	17h 02m 50s	$27^{\circ} 15^{\circ} .1$
Procyon	17h 05m 11s	$26^{\circ} 12^{\prime} .3$
Regulus	17h 07m 49s	$43^{\circ} 20^{\circ} .2$

Find the most probable observed position at G.M.T. 17h 00m 00s January $1^{\text {st. }} ; 1990$;
Time at which the Assumed G.P.S. Position is ($31^{\circ} 20^{`} .5 \mathrm{~S} ; 172^{\circ} 25^{`} .3 \mathrm{E}$).

SOLUTION:

Step (1): Extract GHA \& Dec. of stars;

Star Arcturus	GMT	16h 51m 38s Jan.1 ${ }^{\text {st }}$	
GHA γ	$341^{\circ} 02^{\circ} .6$		
Incr.	$12^{\circ} 56^{\circ} .6$		
SHA*	$146^{\circ} 11^{\circ} .9$	Dec.*	N $19^{\circ} 13^{\circ} .8$

Star Antares	GMT	16h 54m 10s Jan. $1^{\text {st }}$	
GHA γ	$341^{\circ} 02^{{faa22b935-3930-4a36-b4aa-27a4635071d6}} .7$		
SHA*	$112^{\circ} 48^{{ffbe9e5e2-0297-4ec6-9a17-46919177af27}} .7$		

Star Acrux	GMT	16h 57 m 43s Jan. $1^{\text {st }}$	
GHA γ	$341^{\circ} 02^{{f19e54d85-020b-49c1-b92e-a5bb4aa422ad}} .1$		
SHA	$173^{\circ} 29^{{f8b9d634f-2e38-4973-a121-116b701782f4}} .4$		

$l \mid c$	GMT	17h 00m 00s Jan. $1^{\text {st }}$	
GHA γ	$356^{\circ} 05^{{fa72b2481-deb0-4fd6-8e8a-7031df23ca3e}} .0$		
SHA*	$264^{\circ} 03^{{f7cab610c-f7cb-4fb2-b58d-334d353a8d59}} .3$		

| Star Sirius | GMT | 17h 02m 50s Jan. $1^{\text {st }}$ |
| :--- | ---: | ---: | ---: |
| GHA γ | $356^{\circ} 05^{{f156fb0f7-0561-4199-b7aa-3151516df1fb}} .1$ | |

Star Procyon	GMT	17h 05 m 11s Jan. $1^{\text {st }}$	
GHA γ	$356^{\circ} 05^{{f2b1e76ed-b0c3-425f-aaf1-53feea308e37}} .0$		
SHA	$245^{\circ} 17^{{f5c69e045-cb2b-4519-907e-48505735849f}} .1$		

Star Regulus	GMT	17h 07m 49s Jan. $1^{\text {st }}$	
GHA γ	$356^{\circ} 05^{\circ} .1$		
Incr.	$01^{\circ} 57^{\circ} .6$		
SHA *	$208^{\circ} 02^{\circ} .0$	Dec. ${ }^{*}$	N $12^{\circ} 00^{`} .9$

Step (2): Arrange data in two tables as follows; Main Data

Star number	7
DR Latitude	$31^{\circ} 19^{{fa1b74b7a-9454-414f-b145-043c41da3d70}} .0 \mathrm{E}$
True Course	333°
Speed	16.5
Index Error	$-1^{`} .3$
Height of Eye	19.0
Required Time for MPOP	17 h 00 m 00 s

Data of Stars

(1) Arcturus	
GMT	16h 51m 38s
Sextant altitude	$22^{\circ} 08^{{f8c67b9f2-eb02-4b1f-bd9d-35b0ea6bda0f}} .8 \mathrm{~N}$
(2) Antares	
GMT	16h 54m 10s
Sextant altitude	$21^{\circ} 24^{\circ} .3$
GHA of star	$107^{\circ} 25^{\prime} .5$
Declination of star	$26^{\circ} 24^{\prime} .7 \mathrm{~S}$
(3) Acrux	
GMT	16h 57m 43s
Sextant altitude	$56^{\circ} 19^{\prime} .5$
GHA of star	$169^{\circ} 00^{\circ} .0$
Declination of star	$63^{\circ} 02^{\prime} .4 \mathrm{~S}$
(4) Canopus	
GMT	17h 00m 00s
Sextant altitude	$34^{\circ} 49^{\circ} .1$
GHA of star	$260^{\circ} 08^{{f51bb4215-f159-4765-b184-811d18ea2e6c}} .9 \mathrm{~N}$

Step (3): Apply the software program;

UNIVERSAL METHOD

MPOP OF STAR SIGHTS $=31^{\circ} \mathbf{2 0 . 8 1} \mathrm{S} ; 172^{\circ} \mathbf{2 5 . 3 9} \mathrm{E}$

TRAINING APPLICATIONS

Application (1)
Z.T. 0455 Jun. $17^{\text {th }}$; 1990 Ship was in DR position ($20^{\circ} 45^{`} .0 \mathrm{~N} ; 54^{\circ} 35^{`} .0 \mathrm{~W}$).

- True Course to steer 300°
- Steaming Speed 19.5 k
- I.E. 1 ․ 2 on the arc
- Ht. of eye
16.0 m

The following are 3-Star sights; were observed at morning twilight as follows:

Star Name	G.M.T.	Sext. Alt.
Hamal	$08 \mathrm{~h} \mathrm{44m} \mathrm{47s}$	$44^{\circ} 20^{{fbcc9a214-a27a-4e92-923b-3bde0c0dae70}} .2$
Eltanin	$08 \mathrm{~h} 53 \mathrm{~m} \mathrm{10s}$	$25^{\circ} 31^{`} .5$

Find the most probable observed position at G.M.T. 08h 50m 00s Jun. $17^{\text {th }} ;$ 1990; the time at which the ASSUMED G.P.S Position is ($20^{\circ} 50^{`} .0 \mathrm{~N} ; 54^{\circ} 30^{`} .0 \mathrm{~W}$).

Application (2)
Z.T. 1755; Aug. $23^{\text {rd }} ; 1990$. Ship was in DR position ($39^{\circ} 31^{`} .0 \mathrm{~S} ; 155^{\circ} 23^{`} .0$ E).

- True Course to steer
133°
- Steaming Speed
18.3 k
- I.E.
1..7 off the arc
- Ht. of eye
16.0 m

The following are 4-Star sights; were observed at evening twilight as follows:

Star Name	G.M.T.	Sext. Alt.
Rasalhague	$07 \mathrm{~h} \mathrm{30m} \mathrm{45s}$	$33^{\circ} 20^{{f246d7f9c-a661-4fc2-a8cb-a6d56c4b42bf}} .9$
Miaplacidus	$07 \mathrm{~h} \mathrm{37m} \mathrm{32}$	$32^{\circ} 34^{{f0f1de1a1-b4cb-47a7-bda8-132dae1314b9}} .4$

Find the most probable observed position at G.M.T. 07h 40 m 00 s Aug. 23 ${ }^{\text {rd }}$; 1990; the time at which the ASSUMED G.P.S Position is ($39^{\circ} 30^{`} .0 \mathrm{~S}$; $155^{\circ} 20^{`} .0$ E).

Application (3)
Z.T. 1945 February $17^{\text {th }}$; 1990 Ship was in DR position ($40^{\circ} 35^{`} .0 \mathrm{~S} ; 35^{\circ} 45^{`} .0 \mathrm{~W}$).

- True Course to steer 200°
- Steaming Speed 19.0 k
- I.E.
1 ․ 6 off the arc
- Ht. of eye
18.6 m

The following are 5-Star sights; were observed at evening twilight as follows:

Star Name	G.M.T.	Sext. Alt.
Betelguese	21h 38m 38s	$40^{\circ} 57^{{f79be4ba2-bf2d-48a4-bbc3-d8aab63e50e5}} .9$
Acrux	21h 43m 15s	$27^{\circ} 59^{{f200c6820-4499-4516-9b5e-3f3cd68551c7}} .8$
Menkar	21h 51m 20s	$35^{\circ} 34^{\circ} .0$

Find the most probable observed position at G.M.T.21h 45m 00s. Feb. 17 ${ }^{\text {th }} ; 1990$;
Time at which the ASSUMED G.P.S Position is $\left(40^{\circ} 30^{`} .0 \mathrm{~S} ; 35^{\circ} 40^{`} .0 \mathrm{~W}\right)$

Application (4)
Z.T. 1837 April $2^{\text {nd }} ; 1990$ Ship was in DR position ($31^{\circ} 00^{`} .0 \mathrm{~S} ; 100^{\circ} 30^{`} .0 \mathrm{E}$).

- True Course to steer 060°
- Steaming Speed
- I.E.
- Ht. of eye
21.0 kts
1 1. 4 on the arc
14.0 m

The following are 6-Star sights; were observed at evening twilight as follows:

Star Name	G.M.T.	Sext. Alt.
Pollux	11h 18m 50s	$29^{\circ} 18^{\circ} .9$
Regulus	11h 20m 55s	$25^{\circ} 14^{\circ} .4$
Acrux	11h 23m 10s	$29^{\circ} 47^{\circ} .0$
Canopus	11h 25m 57s	$67^{\circ} 50{ }^{\circ} .7$
Acamar	11h 28m 12s	$42^{\circ} 24^{\circ} .2$
Menkar	11h 30m 40s	$24^{\circ} 31{ }^{\circ} .1$

Find the most probable observed position at G.M.T. 11h 30m 00s. April $2^{\text {nd }} 1990$;
Time at which the Assumed G.P.S Position is $\left(30^{\circ} 55^{`} .5 \mathrm{~S} ; 100^{\circ} 33^{`} .3 \mathrm{E}\right)$.

Application (5)

Z.T. 1850, October $15^{\text {th }}$; 1990 Ship was in DR position ($33^{\circ} 30^{`} .0 \mathrm{~S}$; $140^{\circ} 28^{`} .0 \mathrm{~W}$).

- True Course to steer
065 ${ }^{\circ}$
- Steaming Speed
17 k
- I.E.
2'.3 off the arc
- Ht. of eye
14.3 m

The following are 7-Star sights; were observed at morning twilight as follows:

Star Name	G.M.T.	Sext. Alt.
Markab	3h 51m 00s	$24^{\circ} 56^{{f565d487f-012b-42e9-bc0f-768642abf8a9}} .5$
Achernar	3h $57 \mathrm{~m} \mathrm{00s}$	$31^{\circ} 48^{{faacd7e97-68af-437b-99f9-ec4a2af01daf}} .5$
Antares	4h 03m 00s	$41^{\circ} 10^{{f72a32a47-0ba8-4b41-8602-98bf18edef56}} .4$
Altair	4h 09m 00s	$47^{\circ} 07^{`} .2$

Find the most probable observed position at G.M.T. 04h 00m 00s October $15^{\text {th }} ; 1990$; Time at which the Assumed G.P.S. Position is ($33^{\circ} 28^{`} .0 \mathrm{~S} ; 140^{\circ} 30^{`} .0 \mathrm{~W}$).

ANSWERS OF APPLICATIONS

APPLICATION (1)

UNIVERSAL METHOD

MPOP OF STAR SIGHTS $=20^{\circ} 51.35 \mathrm{~N} ; 54^{\circ} \mathbf{2 7 . 2 8} \mathbf{W}$
ANSWER ($\left.20^{\circ} 51^{`} .4 \mathrm{~N} ; 54^{\circ} 27^{`} .3 \mathrm{~W}\right)$
APPLICATION (2)
UNIVERSAL METHOD

MPOP OF STAR SIGHTS $=39^{\circ} \mathbf{3 0 . 0 6} \mathrm{S} ; 155^{\circ} \mathbf{2 0 . 1} \mathrm{E}$

APPLICATION (3)

UNIVERSAL METHOD

Stars Count
Five

True Course		Speed		
200		19		
Index error of the Sext		Hieght of eye		
1.6		18.6		
D.R.Lat				
40	35		S	\bullet
D.R.Long				
35	45		w	\checkmark
Required Time for fixing				

MPOP OF STAR SIGHTS $=40^{\circ} \mathbf{2 9 . 9 7} \mathbf{S} ; 35^{\circ} 39.82 \mathrm{~W}$
ANSWER ($40^{\circ} 30^{`} .0 \mathrm{~S}$; $35^{\circ} 39^{`} .8 \mathrm{~W}$)

APPLICATION (4)

UNIVERSAL METHOD

MPOP OF STAR SIGHTS $=30^{\circ} \mathbf{5 6 . 2 1} \mathrm{S} ; 100^{\circ} \mathbf{3 3 . 2 3} \mathrm{E}$

APPLICATION (5)
UNIVERSAL METHOD
Stars Count
Seven

True Course		Speed		
65		17		
Index error of the Sext		Hieght of eye		
2.3		14.3		
D.R.Lat				
33	30		S	\checkmark
D.R.Long				
140	28			\bullet
Required Time for fixing				
4	0		0	

MPOP OF STAR SIGHTS $=33^{\circ} \mathbf{3 0 . 0 5} \mathbf{S} ; \mathbf{1 4 0}^{\circ} \mathbf{2 8 . 2 9} \mathbf{~ W}$
Submit
ANSWER ($33^{\circ} 30^{`} .1 \mathrm{~S} ; 140^{\circ} 28^{`} .3 \mathrm{w}$)

12) Egyptian Method

To apply this software program you must:

- Practically, decide the required time (GMT) of fixing. You choose a time of round figure of minuets (15m) say. As an example assume that the GMT`s for
5-star sights are given as:

	Star(1)	$\operatorname{Star}(2)$	$\operatorname{Star}(3)$	$\operatorname{Star}(4)$	$\operatorname{Star}(5)$
GMT	3h 22 m 41 s	3h $24 \mathrm{~m} \mathrm{13s}$	3h 26 m 56 s	3h $29 \mathrm{~m} \mathrm{09s}$	3h 32m 17s

So the required time (GMT) of fixing [$\mathbf{3 h} \mathbf{3 0 m ~ 0 0 s}$] is suitable.

- In the exercises, required time (GMT) of fixing is given.

In both cases;

- Calculate $[\underline{G H A} \gamma]$ at the required time of fixing.
- Extract SHA \& Dec. for each star concerned.
- Record Azimuth (Az.) for each star concerned obtained from the process of preparation for star sights.
In both cases; arrange the data as given below to avoid mistakes of entry.

GHR γ at RT	
Co.	True Course
Sp.	Speed
I.E.	Index Error
H.E.	Height of eye
DRL	DR Latitude
DRG	DR Longitude
RT	Required time

Star	1	2	3	4	5
GMT					
Sext. Alt.					
S.H.A.					
Dec.					
Az.					

The Input data are introduced in two steps;
Fill the main data then press star number to introduce parameters of each one.

The following is the screen of the Egyptian Method software program:

The software program is designed to obtain the most probable observed position MPOP; at the required time of fixing.

SOLVED APPLICATION

Z.T. 1945 February $17^{\text {th }} ; 1990$ Ship was in DR position ($40^{\circ} 35^{`} .0 \mathrm{~S} ; 35^{\circ} 45^{`} .0 \mathrm{~W}$).

- True Course to steer 200°
- Steaming Speed 19.0 kts
- I.E. 1 . 6 off the arc
- Ht. of eye 18.6 m

The following are 7-Star sights; were observed at evening twilight as follows:

Star Name	G.M.T.	Sext. Alt.	Az.
Procyon	21h 38m 38s	$32^{\circ} 34^{{fa71ea5aa-eaa5-4952-973f-b96b3bbcabf6}} .3$	$114^{\circ} .4$
Acrux	21h 43m 15s	$27^{\circ} 59^{{f61d6239d-864f-43c0-ad5e-038eb0f67f48}ir & 21h 45m 55s & \(19^{\circ} 13^{{f3e3de0ac-ecaa-49b9-b790-b2bd823cebeb}} .6$	$269^{\circ} .6$
Menkar	21h 51m 20s	$35^{\circ} 34^{{fa5cb0ecf-5b47-464e-a9fb-390fbd99925d}} .7$	$000^{\circ} .8$

Find the most probable observed position at G.M.T. 21h 45 m 00 s Feb. $17^{\text {th }} ; 1990$; the time at which the ASSUMED G.P.S Position is ($40^{\circ} 30^{`} .0 \mathrm{~S} ; 35^{\circ} 40^{`} .0 \mathrm{~W}$).

SOLUTION:

Step (1): Calculate GHR γ at G.M.T. 21h 45m 00s Feb.17 ${ }^{\text {th }} ; 1990$

GHA γ	$102^{\circ} 34^{\circ} .5$
Incr.	$11^{\circ} 16^{\circ} .8$
GHA γ	$113^{\circ} 51^{`} .3$

Step (2): Extract SHA \& Dec. for each star concerned
Step (3): Arrange data as follows;

GHR γ at RT	$113^{\circ} 51^{{fb2f661bc-1d3a-4923-a8a3-fb596831a81f}} .6$
H.E.	18.6 m
DRL	$40^{\circ} 35^{{fded9df6e-9ba9-40ab-993e-006a158134a0}} .0 \mathrm{~W}$
RT	21 h 45 m 00 s Feb. $17^{\text {th }}$

star	Procyon	Suhail	Acrux	Al Na`ir	Diphda	Menkar	Elnath
GMT	213838	214047	214315	214555	214810	215120	215447
Sext. Alt.	3234.0	4630.3	2759.8	1913.8	2806.6	3534.0	2056.7
S.H.A.	24517.7	22305.0	17328.8	2805.9	34913.6	31433.4	27834.6
Dec.	515.0 N	4323.6 S	6302.6 S	4700.6 S	1802.5 S	403.1 N	2836.2 N
Az.	$\mathbf{0 4 6 . 7}$	$\mathbf{1 1 4 . 4}$	$\mathbf{1 5 0 . 9}$	$\mathbf{2 2 3 . 8}$	$\mathbf{2 6 9 . 6}$	$\mathbf{3 1 6 . 3}$	$\mathbf{0 0 0 . 8}$

Egyption Method

MPCP 40o 29.4'S35o 38.9'W

Submit

MPOP is $\left(40^{\circ} 29^{`} .4 \mathrm{~S} ; 35^{\circ} 38^{`} .9 \mathrm{~W}\right)$

Note:
The above figure is the final seen of application; where some couples of stars failed to solve.
This is due to the condition of the difference of azimuths in theory; $\left[\Delta \mathrm{Az} . \leq 30^{\circ}\right]$ or $\left[150^{\circ} \leq \Delta \mathrm{Az} . \leq 210^{\circ}\right]$.
As an example P_{14} is not solved because Az. of star_{1} (Procyon) $=046^{\circ} .7$ and $\operatorname{star}_{4} \mathrm{Al} \mathrm{Na}$ ir $=223^{\circ} .8$ so the difference $=177^{\circ} .1$.

TRAINING APPLICATIONS

Application (1)
Z.T. 0455 Jun. $17^{\text {th }}$; 1990 Ship was in DR position ($20^{\circ} 45^{`} .0 \mathrm{~N} ; 54^{\circ} 35^{`} .0 \mathrm{~W}$).

- True Course to steer
300°
- Steaming Speed 19.5 k
- I.E. $1 ` .2$ on the arc
- Ht. of eye 16.0 m

The following are 3-Star sights; were observed at morning twilight as follows:

Star Name	G.M.T.	Sext. Alt.	Az.
Hamal	$08 \mathrm{~h} \mathrm{44m} \mathrm{47s}$	$44^{\circ} 20^{{ffbbb9f3b-3db1-4444-8b58-62286bd272c8}} .2$	$161^{\circ} .1$
Eltanin	$08 \mathrm{~h} 53 \mathrm{~m} \mathrm{10s}$	$25^{\circ} 31^{`} .5$	318.3

Find the most probable observed position at G.M.T. 08h 50m 00s Jun. $17^{\text {th }} ;$ 1990; the time at which the ASSUMED G.P.S Position is $\left(20^{\circ} 50^{`} .0 \mathrm{~N} ; 54^{\circ} 30^{`} .0 \mathrm{~W}\right)$.

Application (2)
Z.T. 1755; Aug. $23^{\text {rd }}$; 1990. Ship was in DR position ($39^{\circ} 31^{`} .0 \mathrm{~S} ; 155^{\circ} 23^{`} .0 \mathrm{E}$).

- True Course to steer 133°
- Steaming Speed 18.3 k
- I.E. $1^{\text {® }} .7$ off the arc
- Ht. of eye 16.0 m

The following are 4-Star sights; were observed at evening twilight as follows:

Star Name	G.M.T.	Sext. Alt.	Az.
Rasalhague	$07 \mathrm{~h} \mathrm{30m} \mathrm{45s}$	$33^{\circ} 20^{{fb3b03ad3-e85d-42fc-b90e-14a46d9b248e}} .9$	$083^{\circ} .6$
Miaplacidus	$07 \mathrm{~h} \mathrm{37m} \mathrm{32s}$	$32^{\circ} 34^{{fb5294f71-8754-4f1e-92c3-afa52fcfe053}} .4$	$296^{\circ} .4$

Find the most probable observed position at G.M.T. 07h 40 m 00 s Aug. $23^{\text {rd. }}$; 1990; the time at which the ASSUMED G.P.S Position is ($39^{\circ} 30^{`} .0 \mathrm{~S}$; $155^{\circ} 20^{\circ} .0 \mathrm{E}$).

Application (3)
Z.T. 1945 February $17^{\text {th }}$; 1990 Ship was in DR position ($40^{\circ} 35^{`} .0 \mathrm{~S} ; 35^{\circ} 45^{`} .0 \mathrm{~W}$).

- True Course to steer 200°
- Steaming Speed 19.0 k
- I.E. 1 . 6 off the arc
- Ht. of eye 18.6 m

The following are 5-Star sights; were observed at evening twilight as follows:

Star Name	G.M.T.	Sext. Alt.	Az.
Betelguese	21h 38m 38s	$40^{\circ} 57^{{f0b32fb44-fff9-4370-8d42-b99089327c1f}} .9$	$071^{\circ} .4$
Acrux	21h 43m 15s	$27^{\circ} 59^{{f87e240d5-3fa4-4e6f-a9e9-9ab972551e5e}} .8$	$225^{\circ} .3$
Menkar	21h 51m 20s	$35^{\circ} 34^{\circ} .0$	$316^{\circ} .3$

Find the most probable observed position at G.M.T.21h 45m 00s. Feb. 17 ${ }^{\text {th. }} ; 1990$;
Time at which the ASSUMED G.P.S Position is ($\left.40^{\circ} 30^{`} .0 \mathrm{~S} ; 35^{\circ} 40^{`} .0 \mathrm{~W}\right)$
Z.T. 0407 January $2^{\text {nd }} ; 1990$ Ship was in DR position ($31^{\circ} 19^{`} .0 \mathrm{~S} ; 172^{\circ} 25^{`} .0 \mathrm{E}$).

- True Course to steer 333°
- Steaming Speed 16.5 k
- I.E. 1 . 3 on the arc
- Ht. of eye 19.0 m

The following are 6-Star sights; were observed at morning twilight as follows:

Star Name	G.M.T.	Sext. Alt.	Az.
Arcturus	$16 \mathrm{~h} 51 \mathrm{~m} \mathrm{38s}$	$22^{\circ} 08.5$	$048^{\circ} .5$
Antares	$16 \mathrm{~h} 54 \mathrm{n} \mathrm{10s}$	$21^{\circ} 24.3$	$108^{\circ} .8$
Acrux	$16 \mathrm{~h} \mathrm{57m} \mathrm{43s}$	$56^{\circ} 19.5$	$165^{\circ} .0$
Sirius	$17 \mathrm{~h} \mathrm{02m} \mathrm{50s}$	$27^{\circ} 15.1$	$266^{\circ} .2$
Procyon	$17 \mathrm{~h} \mathrm{05m} \mathrm{11s}$	$26^{\circ} 12.3$	$294^{\circ} .6$
Regulus	$17 \mathrm{~h} \mathrm{07m} \mathrm{49s}$	$43^{\circ} 20.2$	$334^{\circ} .8$

Find the most probable observed position at G.M.T. 17 h 00 m 00 s January $1^{\text {st }} ; 1990$;
Time at which the Assumed G.P.S. Position is ($31^{\circ} 20^{`} .5 \mathrm{~S} ; 172^{\circ} 25^{`} .3 \mathrm{E}$).
Application (5)
Z.T. 1850, October $15^{\text {th }} ; 1990$ Ship was in DR position ($33^{\circ} 30^{`} .0 \mathrm{~S} ; 140^{\circ} 28^{`} .0 \mathrm{~W}$).

- True Course to steer 065°
- Steaming Speed 17 k
- I.E.
- Ht. of eye

2`.3 off the arc
14.3 m

The following are 7-Star sights; were observed at morning twilight as follows:

Star Name	G.M.T.	Sext. Alt.	Az.
Markab	3h 51m 00s	$24^{\circ} 56^{\circ} .1$	$049^{\circ} .3$
Diphda	3h $54 \mathrm{~m} \mathrm{00s}$	$26^{\circ} 50^{{fa38dde30-0cdd-4046-8a01-3ac958872307}} .2$	$141^{\circ} .0$
Rigil Kent.	4h $00 \mathrm{~m} \mathrm{00s}$	$32^{\circ} 03^{{faacbfcd2-b603-4aea-9a44-fc4e341d25e8}} .9$	$262^{\circ} .5$
Rasalhague	$4 \mathrm{~h} 06 \mathrm{~m} \mathrm{00s}$	$29^{\circ} 46^{\circ} .4$	$312^{\circ} .7$
Altair	$4 \mathrm{~h} 09 \mathrm{~m} \mathrm{00s}$	$47^{\circ} 07^{`} .2$	$348^{\circ} .8$

Find the most probable observed position at G.M.T. 04h 00m 00s October $15^{\text {th }} ; 1990$;
Time at which the Assumed G.P.S. Position is ($33^{\circ} 28^{`} .0 \mathrm{~S} ; 140^{\circ} 30^{`} .0 \mathrm{~W}$).

ANSWERS OF APPLICATIONS

APPLICATION (1)

Egyption Method

MPCP $=\mathbf{2 0} 0^{\circ} 49^{\prime} \mathrm{N} 54^{\circ} 31.2^{\prime} \mathbf{W}$

Submit
MPOP is ($20^{\circ} 49^{`} .0 \mathrm{~N} ; 54^{\circ} 31^{`} .2 \mathrm{~W}$)

APPLICATION (2)

Egyption Method

MPCP $=39^{\circ}$ 29.8' S 155o 20.1' E
Submit
MPOP is $\left(39^{\circ} 29^{`} .8 \mathrm{~S} ; 155^{\circ} 20^{`} .1 \mathrm{E}\right)$

APPLICATION (3)

Egyption Method

$$
\text { MPCP }=40^{\circ} \text { 29.6' S } 35040.4^{\prime} \mathrm{W}
$$

MPOP is $\left(40^{\circ} 29^{`} .6 \mathrm{~S}\right.$; $\left.35^{\circ} 40^{`} .4 \mathrm{~W}\right)$

APPLICATION (4)

Egyption Method

Result		
$P 12=31^{\circ} 20^{\prime} \mathrm{S} 172^{\circ} 22.1^{\prime} \mathrm{E}$	$\mathrm{P} 24=0^{\circ} 0^{\prime}=\mathrm{S}=0^{\circ} 0^{\prime} \mathrm{E}$	
$P 13=31^{\circ} 20.4^{\prime} \mathrm{S} 172^{\circ} 22.6^{\prime} \mathrm{E}$	$P 25=0^{\circ} 0^{\prime} \mathrm{S} 0^{\circ} 0^{\prime} \mathrm{E}$	$P 45=31^{\circ} 20.9^{\prime} \mathrm{S} 172^{\circ} 27.7^{\prime} \mathrm{E}$
$P 14=31^{\circ} 25.4^{\prime} \mathrm{S} 172^{\circ} 28^{\prime} \mathrm{E}$	$P 26=31^{\circ} 20.9^{\prime} \mathrm{S} 172^{\circ} 21.8^{\prime} \mathrm{E}$	$P 4631^{\circ} 18.8^{\prime} \mathrm{S} 172^{\circ} 27.5^{\prime} \mathrm{E}$
$P 15=31^{\circ} 23.6^{\prime} \mathrm{S} 172^{\circ} 26.1^{\prime} \mathrm{E}$		
$P 16=31^{\circ} 20.5^{\prime} \mathrm{S} 172^{\circ} 22.7^{\prime} \mathrm{E}$	$P 34=31^{\circ} 19.3^{\prime} \mathrm{S} 172^{\circ} 27.6^{\prime} \mathrm{E}$	$P 56=31^{\circ} 18.2^{\prime} \mathrm{S} 172^{\circ} 29.1^{\prime} \mathrm{E}$
$P 23=31^{\circ} 20.6^{\prime} \mathrm{S} 172^{\circ} 21.9^{\prime} \mathrm{E}$	$P 36=0^{\circ} 0^{\prime} \mathrm{S} 0^{\circ} 0^{\prime} \mathrm{E}$	
	$P 35=31^{\circ} 19.1^{\prime} \mathrm{S} 172^{\circ} 28.7^{\prime} \mathrm{E}$	

MPCP $=31^{\circ}$ 20.6' S 172² 25.5' E

APPLICATION (5)

Egyption Method

GROUP (4)

PROBLEMS RELATED TO CELESTIAL NAVIGATION

- Identification of Unknown Bright Star
- Coordinates of Sun, Aries and Equation of Time

D. GROUP (4)

13) Unknown Star Identification

To apply this software program you must:

- Calculate [$\underline{G H A_{2}}$] at GMT [time of taking Bearing and Altitude]
- Extract DR position at GMT.

The software program is designed to give the name of the unknown star.
The screen of the software program is given below

Solved Application

Z.T. 0055 Aug. $13^{\text {th }}, 1990$; DR ($44^{\circ} 02^{`} .6$ S; $29^{\circ} 50^{`} .1$ E)

Sky was cloudy, and a bright star was seen in a clearance of clouds. Altitude and Bearing was taken as follows;

Altitude $\approx 19^{\circ} .0$
True Bearing $\approx 146^{\circ} .5$
Identify the name of that star.

Solution

Step (1); Extract GHA γ

Step (2); Apply Software as follows;

UNKNOWN STAR IDENTIFICATION

Answer: The unknown star is Canopus

TRAINING APPLICATIONS

Application (1)

GMT 08h $06 m 00 \mathrm{~s}$ Jan. $2^{\text {nd }} 1990 ;$ DR ($31^{\circ} 00^{`} .0 \mathrm{~S} ; 172^{\circ} 29^{`} .7 \mathrm{E}$)
Sky was cloudy, and a bright star was seen in a clearance of clouds. Altitude and Bearing was taken as follows;

Altitude $\approx 31^{\circ} .0$
True Bearing $\approx 107^{\circ}$
Identify the name of that star.

Application (2)

GMT 08h 06m 00s Jan. $2^{\text {nd }} 1990 ;$ DR ($31^{\circ} 00^{`} .0$ S; $172^{\circ} 29^{`} .7$ E)
Sky was cloudy, and a bright star was seen in a clearance of clouds. Altitude and Bearing was taken as follows;

Altitude $\approx 63^{\circ} .0$
True Bearing $\approx 194^{\circ}$
Identify the name of that star.
Application (3)
GMT 17h 06m 00s Jan. $1^{\text {st }} 1990$; DR ($31^{\circ} 19^{`} .0 \mathrm{~S} ; 172^{\circ} 28^{`} .3 \mathrm{E}$)
Sky was cloudy, and a bright star was seen in a clearance of clouds. Altitude and Bearing was taken as follows;

Altitude $\approx 44^{\circ} .0$
True Bearing $\approx 337^{\circ}$
Identify the name of that star.

Application (4)
GMT 17h 48m 00s June $27^{\text {th }} 1990$; DR ($38^{\circ} 10^{`} .0 \mathrm{~N} ; 154^{\circ} 38^{`} .0 \mathrm{E}$)
Sky was cloudy, and a bright star was seen in a clearance of clouds. Altitude and Bearing was taken as follows;

Altitude $\approx 45^{\circ} .0$
True Bearing $\approx 290^{\circ}$
Identify the name of that star.
Application (5)
GMT 06h 51m 00s December $7^{\text {th }} 1990$; DR ($38^{\circ} 00^{`} .4 \mathrm{~N} ; 154^{\circ} 24^{`} .9 \mathrm{E}$)
Sky was cloudy, and a bright star was seen in a clearance of clouds. Altitude and Bearing was taken as follows;

Altitude $\approx 17^{\circ} .0$
True Bearing $\approx 044^{\circ}$
Identify the name of that star.

ANSWERS;

Application (1)

UNKNOWN STAR IDENTIFICATION

DR Latitude		
31	0	5 -
DR Longitude		
172	29.7	E -
Altitude		
31		
True Bearing		
107		
GHA		
223	12.2	
Hemi-sphere of star		
E -		
SHA $=255^{\circ}$		

$$
\text { Dec }=28^{\circ} \mathrm{S} \text { Adhara }
$$

Submit

The unknown star is Adhara

Application (2)
UNKNOWN STAR IDENTIFICATION

Application (3)

$$
\text { Dec }=11^{\circ} \mathrm{N} \text { Regulus }
$$

Submit

The unknown star is Regulus

Application (4)

The unknown star is Vega

Application (5)

UNKNOWN STAR IDENTIFICATION

The unknown star is Capella

14) Equation of Time and the Coordinates of Sun and Aries:

To apply this software programs you can proceed without any previous calculations. The software program is designed to obtain the following parameters at a given set of time:

- Dec. of true sun.
- G.H.A. of true sun, (error < 1`.0).
- S.H.A. of true sun.
- R.A. of true sun.
- G.H.A. of Aries, (error < 1`.0).
- Equation of time.

Where the Set of time is consists of; (Year; Month; Day; Hours; Minutes; Seconds)

The screen of the software program is given below

Coordinates of the True Sun and Equation of Time				
\qquadDate Y M GMT	h	m		

Solved Application

Extract GHA, Dec for the Sun, Equation of time and GHA γ at GMT 12h 00m 00s July $15^{\text {th }} 1990$.

Manual Solution
A. For Sun

| GHA | $358^{\circ} 31^{{f48ab758c-831d-4f59-9185-6d86b50e377d}} .4 \mathrm{~N}$ |
| :--- | :--- | :--- | :--- | :--- |
| 00 | |

B. Equation of time [-5m 55s]
C. For Aries γ

GHA	$113^{\circ} 04^{{f3ca475fd-d33b-4be9-8bf1-6dd0e49404dc}} .9$

Software Application

SUN COORDINATES EQ OF TIME Result

Declination	$21^{\circ} 31.4 \mathrm{~N}$
G.H.A	$358^{\circ} 31$
R.A	$114.55479=7 \mathrm{H} \mathrm{38M} 13 \mathrm{~S}$
S.H.A	$245^{\circ} 26.7$
R.G.H.A (Aries)	$113^{\circ} 4.3$
Eq. Of Time	$-0 \mathrm{H}^{\circ} 5 \mathrm{M} \mathrm{55S}$

Back

ANSWERS;

Dec. sun	$21^{\circ} 31^{{fbf82aa20-545b-43cd-a7b3-3943bc3e8268}} .0$
Eq. of time	-5 m 55 s
GHA γ	$113^{\circ} 04^{`} .3$

Training Applications

Application (1)
Find GHA, Dec for the Sun, Equation of time and GHA γ at GMT 18 h 00 m 00 s August $20^{\text {th }} 1990$.

Application (2)
Find GHA, Dec for the Sun, Equation of time and GHA γ at GMT 00h 30 m 00 s January $2^{\text {nd }} 1990$.

Application (3)
Find GHA, Dec for the Sun, Equation of time and GHA γ at GMT 06 h 00 m 00 s June $18^{\text {th }} 1990$.

Application (4)
Find GHA, Dec for the Sun, Equation of time and GHA γ at GMT 18 h 00 m 00 s December $1^{\text {st }} 1990$.

ANSWERS

Application (1)
SUN COORDINATES EQ OF TIME Result

Declination	$12^{\circ} 21.5 \mathrm{~N}$
G.H.A	$89^{\circ} 9.3$
R.A	$149.64513=9 \mathrm{H} 58 \mathrm{M} 34 \mathrm{~S}$
S.H.A	$210^{\circ} 21.3$
R.G.H.A (Aries)	$238^{\circ} \mathbf{4 8}$
Eq. Of Time	$-0 \mathrm{OH}^{2} \mathbf{M ~ 2 2 S}$

Back

ANSWERS;

Dec. sun	$12^{\circ} 21^{{fe91f26e6-1053-48b2-866a-448665ea568d}} .3$
Eq. of time	-3 m 22 s
GHA γ	$238^{\circ} 48^{`} .0$

Application (2)
SUN COORDINATES EQ OF TIME Result

Declination	$22^{\circ} 57.4 \mathrm{~S}$
G.H.A	$186^{\circ} 33.6$
R.A	$282.3336=18 \mathrm{H} 49 \mathrm{M} 20 \mathrm{~S}$
S.H.A	$\mathbf{7 7}^{\circ} \mathbf{4 0}$
R.G.H.A (Aries)	$108^{\circ} 53.6$
Eq. Of Time	$-\mathbf{0 H ~ 3 M ~ 4 5 S ~}$

ANSWERS;

Dec. sun	$22^{\circ} 57^{{fc1a2d803-6f6d-4629-9643-a205aba5074c}} .6$
Eq. of time	-3 m 45 s
GHA γ	$108^{\circ} 53^{`} .6$

Application (3) SUN COORDINATES EQ OF TIME Result

Declination	$23^{\circ} 24 \mathrm{~N}$
G.H.A	$269^{\circ} 45.1$
R.A	$86.46231=5 \mathrm{H} 45 \mathrm{M} 50 \mathrm{~S}$
S.H.A	$273^{\circ} 32.3$
R.G.H.A (Aries)	$356^{\circ} 12.8$
Eq. Of Time	$-0 \mathrm{H} \mathrm{OM}-60 \mathrm{~S}$

Back

ANSWERS;

Dec. sun	$23^{\circ} 24^{{fc15fea4c-0df3-4a81-8d02-98af551cf041}} .1$
Eq. of time	-0 m 60 s
GHA γ	$356^{\circ} 12^{`} .8$

Application (4)

SUN COORDINATES EQ OF TIME Result

Declination	$21^{\circ} 50.6 \mathrm{~S}$
G.H.A	$92^{\circ} \mathbf{4 3 . 1}$
R.A	$247.59807=16 \mathrm{H} 30 \mathrm{M} 23 \mathrm{~S}$
S.H.A	$112^{\circ} \mathbf{2 4 . 1}$
R.G.H.A (Aries)	$340^{\circ} 19$
Eq. Of Time	$+0 \mathrm{H}^{\circ} 10 \mathrm{M} \mathrm{52S}$

Back

ANSWERS;
Dec. sun $\quad 21^{\circ} 50^{\circ} .6 \mathrm{~S}$
GHA $_{\text {sun }} \quad 92^{\circ} 43^{`} .1$
Eq. of time $\quad+10 \mathrm{~m} 52 \mathrm{~s}$
GHA $\gamma \quad 340^{\circ} 19^{\circ} .0$

1990 JANUARY 1, 2, 3 (MON., TUES., WED.)

UT	ARIES	$\text { VENUS }-4 C$	MARS	+1.5	JUPITER - 2.7		SATURN +0.5			STARS							
	G.H.A.	G.H.A., Dec.	G.H.A., Dec.		$\begin{array}{cc} \text { G.H.A., } \quad \text { Dec. } \\ \circ \\ 442.6 & \text { N } 23 \\ \hline & 13.3 \end{array}$		G.H.A. \quad Dec. 0 0 173 29.9 S 22			Name	$\begin{gathered} \text { S.H.A. }, ~ \end{gathered}$		Dec.				
10	10023.2	152 11.4 S16 59.0	21224.3	352155.6			Acamar										
1	11525.7	$\begin{array}{lll}167 & 14.3 & 58.4\end{array}$	22724.9	- 55.9	1945.4	13.3				18832.1		14.3	Achernar			557	27.
02	13028.1	18217.257 .9	24225.5	562	3448.2	13.3	20334.2		14.2	Acrux		29.3	S63	2.4			
03	14530.6	19720.1 - 57.4	25726.1	56.5	4951.0	13.3	21836.4		14.2	Adh		26.0		57.4			
04	16033.0	$\begin{array}{lll}212 & 23.0 & 56.9\end{array}$	27226.7	56.8	6453.9	13.4	23338.5		14.2	Aldebaran		09.3					
05	17535.5	$22726.0 \quad 56.4$	28727.3	57.1	7956.7	13.4	24840.7		14.2								
06	19038.0	242 28.9 S16 55.8	30227.9	S21 57.4	9459.5 N23	313.4	26342.8	S22	14.1	Alioth		35.8		0.4			
07	20540.4	$\begin{array}{lll}257 & 31.8 & 55.3\end{array}$	31728.5	57.7	11002.4	13.4	27845.0		14.1	Alkaid		12.7	N49	21.4			
08	22042.9	$\begin{array}{lll}272 & 34.7 & 54.8\end{array}$	33229.0	57.9	12505.2	13.4	29347.1		14.1	Al ${ }^{\text {Na' }}$		05.9		0.8			
M 09	23545.4	$28737.7 \cdots 54.3$	34729.6	58.2	14008.0	13.5	30849.3		14.0	Alnilam		03.9					
O 10	25047.8	30240.6	230.2	58.5	15510.8	13.5	32351.4		14.0	Alphard		3.1	S 8				
N 11	26550.3	31743.6	1730.8	58.8	17013.7	13.5	33853.6		14.0	Aphard							
D 12	28052.8	332 46.5 S16 52.7	3231.4	S21 59.1	18516.5 N23	13.5	35355.7	S22	13.9	Alphecca	126	2.1					
A 13	29555.2	$34749.5 \quad 52.2$	4732.0	59.4	20019.3	13.5	857.8		13.9	Alpheratz	358	01.9	29	02.3			
Y 14	31057.7	$252.4 \quad 51.7$	6232.6	59.7	21522.2	13.5	2400.0		13.9	Aph		25.7	N 8	50.4			
15	32600.2	$1755.4 \cdots 51.2$	7733.2	2159.9	23025.0	13.6	3902.1		13.8	Ankaa		32.9					
16	34102.6	3258.4	9233.8	2200.2	24527.8	13.6	5404.3		13.8	Antares							
17	35605.1	$4801.3 \quad 50.2$	10734.4	00.5	26030.7	13.6	6906.4		13.8								
18	1107.5	63 04.3 S16 49.7	12235.0	S22 00.8	27533.5 N23	13.6	8408.6	S22	13.7	A		11.9		3.8			
19	2610.0	7807.349 .1	13735.6	01.1	29036.3	13.6	9910.7		13.7	A		06.5	S69	00.6			
20	4112.5	$\begin{array}{lll}93 & 10.3 & 48.6\end{array}$	15236.1	01.4	30539.1	13.7	11412.9		13.7	Avior		24.8					
21	5614.9	10813.3 . 48.1	16736.7	01.6	32042.0	13.7	12915.0		13.7	Bellatrix		50.6					
22	$\begin{array}{ll}71 & 17.4\end{array}$	$\begin{array}{lll}123 & 16.3 & 47.6\end{array}$	18237.3	01.9	33544.8	13.7	14417.2		13.6	Betelgeuse		20.0	7				
23	8619.9	$138 \quad 19.3 \quad 47.1$	19737.9	02.2	35047.6	13.7	15919.3		13.6								
200	10122.3	15322.351646 .6	21238.5	S22 02.5	550.5 N23	13.7	17421.5	S22	13.6	Canopus	264	03.4					
01	11624.8	$168 \quad 25.3 \quad 46.1$	22739.1	02.8	2053.3	13.8	18923.6		13.5	Capella		00.1	N45	59.5			
02	13127.3	18328.3 45.6	24239.7	03.0	3556.1	13.8	20425.7		13.5	Deneb		4.0					
03	14629.7	19831.3 - 45.1	25740.3	03.3	5058.9	13.8	21927.9		13.5	Denebol							
04	16132.2	21334.3 44.6	27240.9	03.6	6601.8	13.8	23430.0		13.4	Diphda							
05	17634.7	22837.344 .1	28741.4	03.9	8104.6	13.8	24932.2		13.4								
06	19137.1	243 40.4 S16 43.6	30242.0	S22 04.2	9607.4 N23	13.9	26434.3	S22	13.4		194	12.5					
07	20639.6	$25843.4 \quad 43.1$	31742.6	04.4	111.10 .2	13.9	27936.5		13.3		278	34.5		36.1			
T 08	22142.0	$27346.5 \quad 42.6$	33243.2	04.7	12613.1	13.9	29438.6		13.3	Eltanin		4.9					
U 09	23644.5	$28849.5 \cdots 42.1$	34743.8	05.0	14115.9	13.9	30940.8		13.3	Enif		04.7		49.8			
E 10	25147.0	30352.541 .5	244.4	05.3	15618.7	13.9	32442.9		13.2	Fomalhaut							
S 11	26649.4	31855.641 .0	1745.0	05.6	17121.6	13.9	33945.1		13.2								
D 12	28151.9	333 58.7 S16 40.5	3245.6	S22 05.8	18624.4 N23	14.0	35447.2	S22	13.2	Gacrux	172	20.8		3.3			
A 13	29654.4	34901.740 .0	4746.1	06.1	20127.2	14.0	949.4		13.1	Gienah		10.4		29.2			
Y 14	31156.8	404.8 39.5	6246.7	06.4	21630.0	14.0	2451.5		13.1	Gienar		13.5		9.4			
15	32659.3	1907.9 - 39.1	7747.3	06.7	23132.9	14.0	3953.6		13.1	Hamal		20.6		25.2			
16	34201.8	$3410.9 \quad 38.6$	9247.9	06.9	24635.7	14.0	5455.8		13.1	Kaus Aust.							
17	35704.2	$4914.0 \quad 38.1$	10748.5	07.2	26138.5	14.1	6957.9		13.0								
18	1206.7	6417.1 S16 37.6	12249.1	S22 07.5	27641.4 N23	14.1	8500.1	S22	13.0	Kochab	137			11.4			
19	2709.1	$7920.2 \quad 37.1$	13749.7	07.8	29144.2	14.1	10002.2		13.0	Markab			N15	09.2			
20	4211.6	9423.3 36.6	15250.3	08.0	30647.0	14.1	11504.4		12.9	Menkar		33.3	N 4	3.2			
21	5714.1	10926.4 - 36.1	16750.8	08.3	32149.8	14.1	13006.5		12.9	Menkent	148	28.6		19.2			
22	$\begin{array}{lll}72 & 16.5\end{array}$	$\begin{array}{lll}124 & 29.5 & 35.6 \\ 139 & 32.6\end{array}$	18251.4	08.6	33652.7	14.2	14508.7		12.9	Miaplacidus	221	42.9					
23	8719.0	$13932.6 \quad 35.1$	19752.0	08.9	35155.5	14.2	$160 \quad 10.8$		12.8								
300	10221.5	154 35.7 S16 34.6	21252.6	S22 09.1	658.3 N23	14.2	17513.0	S22	12.8	Mirfak	309						
01	11723.9	16938.8 34.1	22753.2	09.4	2201.1	14.2	19015.1		12.8	N		20.5	S26	18.7			
02	13226.4	$18441.9 \quad 33.6$	24253.8	09.7	3704.0	14.2	20517.3		12.7	aco		47.3	S56	46.2			
03	14728.9	19945.1 - 33.1	25754.4	10.0	5206.8	14.2	22019.4		12.7	Pollux		48.8					
04	16231.3	21448.233 .6	27254.9	10.2	6709.6	14.3	23521.6		12.7	Procyon		17.8	N 5				
05	17733.8	$22951.3 \quad 32.1$	28755.5	10.5	8212.4	14.3	25023.7		12.6	Procyon							
06	19236.3	24454.5 S16 31.7	30256.1	S22 10.8	9715.3 N23	14.3	26525.8	S22	12.6	Rasalha		23.1		33.8			
W 07	20738.7	$25957.6 \quad 31.2$	31756.7	11.0	11218.1	14.3	28028.0		12.6	Regulus	208	02.0	N12	00.9			
E 08	22241.2	275 00.7 100	33257.3	11.3	12720.9	14.3	29530.1		12.5	Rigel	282	28.7	S 8	12.7			
D 09	23743.6	29003.9 - 30.2	34757.9	11.6	14223.8	14.4	31032.3		12.5	Rigil Ken		16.3					
N 10	25246.1	$30507.0 \quad 29.7$	258.4	11.9	15726.6	14.4	32534.4		12.5	Sabik	102	33.1	S15	42.9			
E 11	26748.6	$32010.2 \quad 29.2$	1759.0	12.1	17229.4	14.4	34036.6		12.5								
512	28251.0		3259.6	S22 12.4	187 32.2 N23	14.4	35538.7	S22	12.4	Schedar	350	00.9	N56	29.3			
D 13	29753.5	$\begin{array}{lll}350 & 16.5 & 28.3\end{array}$	4800.2	12.7	20235.1	14.4	1040.9		12.4	Shaula	96	46.2	S37	05.9			
A 14	31256.0	$\begin{array}{lll}519.7 & 27.8\end{array}$	6300.8	12.9	21737.9	14.4	2543.0		12.4	Sirius	258	48.9	S16	42.1			
Y 15	32758.4	2022.9 - 27.3	7801.4	13.2	23240.7	14.5	4045.2		12.3	Spica		49.9					
16	34300.9	$3526.1 \quad 26.8$	9301.9	13.5	24743.5	14.5	5547.3		12.3	Suhail	223	05.1	S43	23.4			
17	35803.4	$5029.3 \quad 26.3$	10802.5	13.7	26246.4	14.5	7049.5		12.3								
18	1305.8	6532.4 S16 25.9	12303.1	S22 14.0	277 49.2 N23	14.5	8551.6	S22	12.2	Voga	80	51.3	N38	46.3			
19	2808.3	$8035.6 \quad 25.4$	13803.7	14.3	29252.0	14.5	10053.7		12.2	Zuben'ubi	137	25.2	S16				
20	4310.8	$9538.8 \quad 24.9$	15304.3	14.5	30754.8	14.6	11555.9		12.2								
21	5813.2	11042.0 - 24.4	16804.8	14.8	32257.7	14.6	13058.0		12.1		S.						
22	7315.7	$12545.3 \quad 23.9$	18305.4	15.1	33800.5	14.6	14600.2		12.1	Venus			134				
23	8818.1	$14048.5 \quad 23.5$	19806.0	15.3	35303.3	14.6	36102.3		12.1	Mars		16.2	94	49			
er. Poss	$\begin{array}{cc} \mathrm{h} & \mathrm{~m} \\ \text { is. } 17 & 11.7 \end{array}$	$\begin{array}{lllll}v & 3.1 & d & 0.5\end{array}$	v 0.6	d 0.3	$v \quad 2.8$ d	0.0	$v \quad 2.1$	d		Jupiter Saturn		$\begin{aligned} & 28.1 \\ & 59.1 \end{aligned}$	$\begin{aligned} & 233 \\ & 122 \end{aligned}$				

XC JANUARY 1, 2, 3 (MON., TUES., WED.)
11

$\underset{1>7 C}{X C}$ FEBRUARY 15, 16, 17 (THURS., FRI., SAT.)

xC
FEBRUARY 15, 16, 17 (THURS., FRI., SAT.)
41

	SUN		MOON			Lat.	${ }^{1}$ wilight		Sunrise	Moonrise			
							Naut	Civil		15	16	17	18
$\begin{gathered} \text { (GMT) } \\ \text { d } \\ 1500 \end{gathered}$	$\overline{\text { G.H.A. }}$	D	$\begin{array}{ll} \hline \text { G.H.A. } & v \\ 0 & \end{array}$	Dec		N 72			\% 08 08	${ }_{0} 0138$	${ }^{-1}$	" ${ }^{-m}$	${ }^{\text {n }}$ - ${ }^{\text {m }}$
	17627.3	S12 50.5	30244.515 .2	\$24 32.2	1.954 .4	N 70	0620	0722	0830	OO 57	0401		
	19127.4	49.6	31718.715 .1	1444.0	11.954 .4	N 6	0609	0714	0815	0032	0242		
02	20627.4	48.7	33152.815 .1	1455.9	11.854 .4	66	0607	0707	0803	0014	0205	0427	
03	221 27.4	47.9	34626.915 .1	1507.7	11.754 .4	64	0606	0702	0752	2538	0138	0329	
04	23627.5	47.0	1101.015 .0	1519.4	11.754 .4	6	0605	0657	0744	2518	0118	0255	0436
05	25127.5	46.2	1535.015 .0	1531.1	11.654 .4	60	0604	0652	0736	2502	0102	0231	0359
06	26627.5	51245.3	3009.015 .0	S15 42.7	11.554 .3	N 58	0603	0649	0730	2448	0048	0211	0332
${ }^{1} 07$	28127.5	44.5	4443.014 .9	1554.2	11.454 .3	56	0602	0645	0724	2437	0037	0155	0312
\uparrow	29627.6	43.6	5916.914 .8	1605.6	11.454 .3	54	0601	0642	0718	2426	0026	0142	0255
H	31227.6	42.8	7350.714 .9	1617.0	11.354 .3	52	0559	0639	0714	2417	0017	0130	0240
\checkmark	32627.6	41.9	8824.614 .7	1628.3	11.354 .3	50	0558	0636	0709	2409	0009	0119	0227
R	34127.7	41.0	10258.314 .8	1639.6	11.254 .3	45	05 S6	0630	0700	2352	2457	0057	0202
$\begin{array}{ll} 5 & 12 \\ 0 & 13 \end{array}$	35627.7	S12 40.2	11732.114 .6	S16 50.8	1.154 .3	N 40	0553	0624	0652	2338	2440	0040	0142
	2127.7	39.3	13205.714 .7	1701.9	11.054 .3	35	0550	0619	0645	2326	2425	0025	0123
	2627.8	38.5	14639.414 .6	1712.9	11.054 .3	30	0547	0615	0639	2316	2412	0012	0109
	4127.8	37.6	16213.514 .5	1723.9	10.954 .3	20	0540	0606	0629	2258	2350	2444	0044
16	5627.8	36.7	17546.514 .5	2734.8	10.854 .3	N 10	0533	0558	0620	2243	2332	2422	0022
17	7127.9	35.9	19020.014 .4	1745.6	10.854 .3	0	0525	0550	0611	2229	2314	2402	0002
18	8627.9	S12 35.0	20453.414 .4	S17 56.4	10.754 .3	S 10	0515	0540	0602	2215	2257	3	2432
	10127.9	34.2	21926.814 .3	1807.1	10.654 .3	2	0503	0529	0552	2200	2238	2321	2409
20	11628.0	33.3	23400.114 .3	1817.7	$10.5 \begin{aligned} & 54.3\end{aligned}$	30	0446	0516	0541	2143	2217	2257	2342
21	13228.0	32.4	24833.414 .2	1828.2	10.454 .2		0436	0508	0534	2133	2205	2242	2326
2	14628.0	31.6	26306.614 .2	1838.6	10.454 .2		0424	0458	0527	2122	2151	2226	2308
23	16128.1	30.7	27739.814 .1	1849.0	10.354 .2	45	0408	0447	0518	2108	2134	2206	2246
	177628.1	51229.8	29212.914 .1	51859.3	10.254 .2	550	0348	0432	0508	2053	2114	2142	2219
1600	19128.1	29.0	30646.014 .0	1909.5	10.154 .2		0338	0426	0503	2045	2104	2130	2205
03	20628.2	28.1	32119.014 .0	1919.6	10.154 .2	54	0327	0418	0457	2037	2053	2116	2149
	22128.2	27.3	33552.013 .9	1929.7	9.954 .2		0314	0409	0451	2028	2041	2101	2132
03	23628.2	26.4	$\begin{array}{llll}350 & 24.9 & 13.8\end{array}$	1939.6	9.954 .2		0258	0359	0445	2027	2027	2042	2109
05	25128.3	25.5	457.713 .8	1949.5	9.854 .2	S 60	0238	0348	0437	2005	2010	2019	2039
	$\begin{array}{ll} 266 & 28.3 \\ 281 & 28.3 \end{array}$	$\begin{array}{ll}512 & 24.7 \\ 23.8 \\ & 2\end{array}$	$\begin{array}{lll} 19 & 30.5 & 13.7 \\ 34 & 03.2 & 13.7 \end{array}$	$\begin{array}{rl} 519 & 59.3 \\ 20 & 09.0 \end{array}$	9.754 .2 9.7 54.2			Twil	ight				
	29628.4	22.9	$\begin{array}{llllllllllllll}48.9 & 33.6\end{array}$	2018.7	9.554 .2			Civil	aut.	15	16	17	18
F 09	31228.4	22.1	6308.513 .6	2028.2	9.554 .2								
R 10	32628.5	21.2	7741.113 .4	2037.7	9.454 .2								
11	34128.5	20.3	9213.513 .5	2047.1	9.254 .2	N 72	1540	1659	1819	0557			
D 12	35628.5	51219.5	10646.013 .4	S20 56.3	9.254 .2	N 70	1600	1708	1820	0634	0502	-	-
	1128.6	18.6	12118.413 .3	2105.5	9.254 .2	N 6	1615	1716	1821	0700	0622		
	2628.6	17.7	13550.713 .2	2114.7	9.054 .2		1627	1722	1822	0721	0700		-
15	4128.7	16.9	15022.913 .2	2123.7	8.954 .2		1637	1728	1823	0737	0727	0712	
16	5628.7	16.0	16455.113 .1	2132.6	8.854 .2	62	1646	1733	1824	0750	0748	0746	74
17	7128.7	15.1	17927.213 .1	2141.4	8.854 .2	60	2653	1737	1826	0802	0805	0811	0824
18	8628.8	S12 14.3	19359.313 .0	52150.2	8.654 .2	N 58	1700	1741	1827	0812	0820	0831	0851
19	10128.8	13.4	20831.313 .0	2158.8	8.654 .2	5	1705	1744	1828	0821	0832	0848	0912
20	11628.9	12.5	22303.312 .8	2207.4	8.5 54.2	54	1711	1747	1829	0829	0843	0902	0929
21	13128.9	11.6	23735.112 .9	2215.9	8.354 .2		1715	1750	1830	0836	0852	0914	0944
22	14628.9	10.8	25207.012 .7	2224.2	8.354 .2	5	1720	1753	1831	0842	0901	0925	0957
23	16129.0	09.9	26638.712 .7	2232.5	8.254 .2	45	1729	1759	1833	0856	0920	0948	1024
17	17629.0	5120980	28110.412 .6	52240.7	8.154 .2	N 40	1737	1804	1836	0907	0935	1006	1045
	19229.1	08.2	29542.012 .6	2248.8	9.0 54.2	50	1743	1809	1839	0917	0947	1022	1102
	20629.1	07.3	31013.612 .5	2256.8	7.854 .2	30	1749	1814	1842	0926	0959	1035	1118
03	22129.1	06.4	32445.112 .4	2304.6	7.854 .2	20	1800	1822	1848	0941	1018	1058	1143
	23629.2	05.5	33916.512 .4	2312.4	7.754 .2	N 10	1809	1830	1855	0954	1035	1118	1206
D5	25129.2	04.7	35347.912 .3	2320.1	7.654 .2	,	1817	1839	1903	1006	1050	1137	1227
06	26629.3	\$12 33.8	819.212 .2	52327.7	7.554 .3	510	1826	1848	1913	1019	1106	1156	1247
	28129.3	02.9	2250.412 .2	2335.2	7.454 .3	20	1836	1859	1925	1032	${ }_{11} 23$	1216	1310
	29629.4	02.1	$37 \quad 21.612 .1$	2342.6	7.254 .3	30	1847	1912	1941	1047	1143	1239	1336
A	31129.4	01.2	5152.712 .1	2349.8	7.254 .3	35	1853	1920	1951	1056	1254	1253	1351
,	32629.5	1200.3	6623.811 .9	2357.0	7.154 .3	40	1901	1929	2003	1106	1208	1309	1409
${ }_{\square}^{4} 11$	34129.5	1159.4	8054.712 .0	2404.1	6.954 .3	45	1909	1940	2019	1118	1223	1328	1431
${ }_{\mathrm{R}}^{\mathrm{D}} 12$	35629.5	S11 58.6	9525.711 .8	S24 11.0	6.954 .3	S 50	1919	1954	2038	1133	1243	1352	1458
	1129.6	57.7	10956.511 .8	2417.9	6.754 .3		1924	2001	2048	1139	1252	1404	1511
	2629.6	56.8	12427.311 .7	2424.6	6.754 .3	54	1930	2009	2059	1147	1302	1417	1527
	4129.7	55.9	13858.011 .7	2431.3	6.554 .3		1935	2017	2112	1156	1314	1432	1545
	5629.7	55.0	15328.711 .6	2437.8	6.454 .3		1942	2027	2127	1205	1328	1450	1607
17	7129.8	54.2	16759.311 .5	2444.2	6.354 .3	560	1950	2038	2146	1216	1344	1512	1636
18	8629.8	SII 53.3	$\begin{array}{llll}182 & 29.8 & 11.5 \\ 197 & 003 & 11.4\end{array}$	S24 50.5	6.254 .3 6.54 5.3			SUN					
20	$\begin{array}{ll}101 & 29.9 \\ 116 \\ 29.9\end{array}$	52.4 51.5	$\begin{array}{lllll}197 & 00.311 .4 \\ 211 & 30.7 & 11.3\end{array}$	24 25 26.7	6.154 .3 6054.4		n. of		Mer.				
	13130.0	50.7			$\begin{array}{lll} 6.0 & 54.4 \\ 5.8 & 54.4 \end{array}$	Day	00^{n}	12^{n}	Pass.		lower		has
	14630.0	49.8	24031.311 .2	2514.6	5.854 .4								
23	16230.1	48.9	25501.511 .1	2520.4	5.654 .4	15	1411	1409	1214	0356	1617	20	
						16	1408	1406	1214	0440	1702	20	
	S.D. 16.2	0.9	4.8	4.8	14.8	17	1404	1402	1214	0526	1750	22	

XC APRIL 1, 2, 3 (SUN., MON., TUES.)

XC. . APRIL 1, 2, 3 (SUN., MON., TUES.)

	SUN	MOON		Lat．	Twilight		Suntise	Mooncise				
				Naut．	Civil	15		16	17	18		
	G．t．A．De				N 72	＂＇m	${ }^{m}$	${ }^{\text {m }}$				2122
	$179{ }^{17} 55.9$ N23 17.4	$283{ }^{\circ} 40.413 .7$	S 551.514 .757 .3	N 70	－	맘	믐	（1）	2318 2326	2239 2258	2122 2224	
	19455.817 .5	29813.113 .7		68	믐	믐	믐	（\％）	2333	2314	2247	
	20955.6 17.6 224 55.5 17.7	$31245.8 \quad 13.7$	522.114 .857 .3		口	ㅁ	－	（ex）\％	2338	2327	2311	
03	224 $555.5 \cdots 17.7$		$\begin{array}{llllllllllllll}5 & 07.314 .757 .4\end{array}$	64	IIII	年	0132	2349	2343	2337	2331	
04	23955.417 .8		452.614 .957 .4	62	Ifil	H7\％	0210	2349	2348	2347	2346	
05	25455.217 .9	$35623.8 \quad 13.7$	437.714 .857 .4	60	\％	0052	0236	2349	2351	2354	2400	
06	26955.1 N 2318.1	1056.513 .6	S 422.914 .957 .4	N 58	榮	0141	0256	2349	2355	2401	0001	
	28455.01818	2529.113 .7	408.014 .957 .5		朋	0211	0313	2349	2358	2408	0008	
${ }^{0} 8$	29954.8 18.3 314 54.8	4001.813 .6	353.115 .057 .5	4	0048	0233	0327	2349	2400	0000	D0 13	
$\begin{array}{ll}\mathrm{F} & 09 \\ \mathrm{R} & 10\end{array}$	$\begin{array}{llll}314 & 54.7 \\ 329 & 54.6 & & 18.4 \\ 34.5\end{array}$			50	0133	0251	0339	2349	2403	0003	0018	
	329 54.6	$\begin{array}{lllllll}69 & 07.0 \\ 83 & 39.6 & 13.6\end{array}$		50	0200	0306	0350	23	2405	0005	0023	
D 12	35954.3 N23 18．7	9812.213 .5		S	0246	0335	0413	2349	2410	0010	0033	
	$1454.2{ }^{18.8}$	11244.713 .6	5	N 40	0316	0358	0431	2349	2414	0014	0042	
	29 54.0 18.9 188			30	03 03 03 08 58	0416	0446	2349	2418	0018	0049	
15	4453.9 ． 19.0	14149.813 .5		20	0358 04 27	0431	O4 04	2349 2349	$\begin{array}{ll}24 & 21 \\ 24 & 27\end{array}$	00 00 00 27	0055 0106	
16	$5953.8 \quad 19.1$	15622.313 .5	152.615 .257 .8	N 10	0449	0516	0539	2349	2431	0031	01 01 016	
17	$7453.6 \quad 19.2$	17054.813 .4	137.415 .257 .8		0508	0534	0557	2349	2436	0036	0126	
18	8953.5 N23 19.3	$185 \quad 27.213 .5$	\＄ 122.215 .3 57．8	S 10	0525	0551	0624	2350	2441	0042	0135	
19	10453.419 .4	19959.713 .4	$1 \begin{array}{llll}106.915 .257 .8\end{array}$	20	0541	0609	0633	2350	2446	0046	0145	
20	12953.219 .5	21432.113 .3	051.715 .357 .9	30	0558	0628	0654	2350	2452	0052	0157	
2	13453.1 ．． 19.6	22904.413 .4	036.415 .357 .9	35	0606	0638	0706	2350	2455	0055	0204	
22	14953.019 .7	$243 \begin{array}{llllll} & 36.8 & 13.3\end{array}$	021.115 .357 .9	40	0616	0650	0720	2350	2459	D0 59	0212	
23	16452.819 .8	$\begin{array}{ll}258 & 09.113 .3\end{array}$	S 005.815 .358 .0	45	0626	0703	0737	2350	2504	0104	0221	
1600	17952.7×2319.9	27241.413 .2	N 009.515 .458 .0	S 50	0638	0719	0758	2350	2509	0109	0232	
001	$19452.6 \quad 20.0$	287 13.613 .3	024.915 .3 58．0	52	0643	0727	0808	2350	2512	0112	0237	
0	$20952.4 \quad 20.1$	30145.913 .2	040.215 .458 .2	54	0649	0735	0819	2351	2515	0115	0243	
0	22452.3 ．． 20.2	31618.013 .2	055.615 .458 .1	56	0655	0744	0831	2351	2518	0118	0249	
04	$23952.2 \quad 20.3$	33050.213 .1	111.015 .458 .1	58	0702	0754	0846	2351	25 21	0121	0257	
05	$25452.0 \quad 20.4$	34522.313 .0	126.415 .458 .2	S 60	0709	0806	0903	2351	2525	0125	0305	
061	$\begin{array}{llll}269 & 51.9 & \text { N23 } & 20.5 \\ 284 & 51.8\end{array}$	$\begin{array}{rrrr}359 & 54.3 & 13.1 \\ 14 & 26.4 & 13.0\end{array}$	$\begin{array}{llllll} \mathrm{N} & 1 & 41.8 & 15.4 & 58.2 \\ 1 & 57.2 & 15.4 & 58.2 \end{array}$									
08	29951.6	$\begin{array}{lllllllllll}14 & 58.4 & 12.9\end{array}$		Lot．	Sunsat	Civil	Nout．	15	16	17	18	
A 09	31451.5 ．． 20.8	$43 \quad 30.312 .9$	228.015 .458 .3									
T 10	$32951.4 \quad 20.9$	5802.212 .8	243.415 .558 .3									
$\bigcirc 11$	34451.220 .9	7234.012 .8	258.915 .458 .3	N 72	ロ	口	\square	1043	1255	1516	18 18	
${ }_{\text {R }} \mathrm{D}$	35951.1 N 2321.0	8705.812 .8	N 314.315 .458 .4	N 70	口	口	－	1048	1250	1459	1733	
	$2450.9 \quad 21.1$	10137.612 .7	$\begin{array}{lllllll}3 & 29.7 & 15.5 & 58.4\end{array}$	68	口	믐	口	1052	1246	1446	1701	
	$\begin{array}{lll}29 & 50.8 \\ 44 & 50.7 \\ & \\ 21.2 \\ 21.3\end{array}$	$\begin{array}{lllll}116 & 09.3 & 12.6 \\ 130 & 40.9 & 12.6\end{array}$	3 45.2 15.4 4 00.6 58.4	${ }_{66}^{66}$	2230	믐	III	1055	1242	1435	1639	
16	$\begin{array}{llll}44 & 50.7 & \cdots & 21.3 \\ & 59 & 50.5\end{array}$	$\begin{array}{llll}145 & 12.512 .6\end{array}$		62	2230 2152	門	$\begin{aligned} & \text { nin } \\ & H_{3} \end{aligned}$	1058		1426	1621	
17	$7450.4 \quad 21.5$	15944.112 .4	431.515 .458 .5	60	2126	2310		1103	1235	1418	16 16 15 54	
18	8950.3 N23 21.6	17415.512 .5	N 446.915 .458 .6	N 58	2105	2221	脽	1105	1233	1406		
19	$10450.1 \quad 21.6$	18847.012 .3	502.315 .458 .6	56	2049	2151	Itit	1106	1232	1401	1534	
20	11950.021 .7	20318.312 .3	517.715 .458 .6	5	2034	2129	2315	1108	1230	1356	1526	
21	13449.9 ．． 21.8	21749.612 .3	533.115 .458 .7	52	2022	2111	2229	1109	1229	1352	1519	
22	$14949.7 \quad 21.9$	$232 \quad 20.912 .2$	548.515 .458 .7	50	2011	2056	2201	1110	1228	1348	1513	
23	$16449.6 \quad 22.0$	24652.112 .1	603.915 .458 .7	45	1949	2026	2116	1113	1225	1340	1459	
1700	17949.5 N23 22.0	26123.212 .0	N 619.315 .358 .8	N 40	1931	2004	2045	1115	1223	1333	1447	
	$19449.3 \quad 22.1$	27554.212 .0	634.615 .458 .8	35	1916	1945	2022	1117	1221	1328	1438	
02	$20949.2 \quad 22.2$	29025.212 .0	650.015 .3 58．8	30	1903	1930	2004	1118	1219	1323	1429	
03	22449.1 ．． 22.3	30456.211 .8	705.315 .358 .9	20	1841	2905	1935	1121	1216	1314	1415	
05	$23948.9 \quad 22.4$	31927.011 .8	720.615 .358 .9	N 10	1822	1845	1912	1123	1214	1306	1402	
05	$25448.8 \quad 22.4$	33357.811 .7	735.915 .258 .9	0	1804	1827	1853	1126	1211	1259	2351	
06	26948.6 N23 22.5	34828.511 .6	N 751.115 .358 .9	\＄ 10	1747	1810	1836	1128	1209	1252	1339	
07	$28448.5 \quad 22.6$	259.111 .6	806.415 .259 .0	20	1728	1752	1820	1130	1206	1245	1327	
08	29948.4	17729.711 .5	821.615 .259 .0	30	1707	1734	1803	1133	1204	1236	1312	
509	31448.2 ．． 22.7	3200.211 .4	836.815 .159 .0	35	1655	1723	1755	1134	1202	1231	1304	
U 10	$32948.1 \quad 22.8$	4630.611 .3	851.915 .259 .1	40	1641	1711	1745	1136	1200	1226	1255	
	$34448.0 \quad 22.9$	6100.911 .2	907.115 .059 .1	45	1624	1658	1735	1138	1158	1219	1244	
D 12	35947.8 N23 23.0	7531.111 .2	N 922.115 .159 .1	S 50	1603	1642	1723	1140	1155	1212	1231	
	$1447.7 \quad 23.0$	9001.311 .1	937.215 .059 .2		1553	1634	1718	1141	1154	1208	1225	
	$2947.6 \quad 23.1$	10431.411 .0	952.215 .059 .2	54	1542	1626	1712	1142	1153	1204	1219	
15	44 47．4 ． 23.2	11901.410 .9	1007.215 .059 .2	56	1530	1617	1706	1143	1151	1200	1211	
17	$5947.3 \quad 23.2$	13331.310 .8	1022.214 .959 .3	5	1515	1607	1659	1145	1150	1155	1203	
17	$7447.2 \quad 23.3$	14801.110 .8	1037.114 .959 .3	S 60	1458	1555	1652	1146	1148	1150	1154	
18	$\begin{array}{rrrr}89 & 47.0 & \text { N23 } & 23.4 \\ 104 & 46.9 & & 23.4\end{array}$	16230.910 .6	$\begin{array}{ccccc} \text { N1O } & 52.0 & 14.8 & 59.3 \\ 11 & 06.8 & 14.8 & 59.3 \end{array}$			SUN						
20	$11946.7 \quad 23.5$	19130.110 .4	1121.614 .8 59．4	Day		Time	Mer．		ass．		Phase	
21	13446.6 － 23.6	20559.510 .4	1136.414 .759 .4	Day	$00{ }^{\prime \prime}$	12 ${ }^{\text {B }}$	Pass．	Upper	Lower		has	
2	$14946.5 \quad 23.6$	22028.910 .3	1151.714 .659 .4									
23	$6446.3 \quad 23.7$	23458.210 .2	1205.714 .659 .5	15	0016	0023	1200	0515	1737	22		
	S．D． 15.8 d 0.1	S．D． 15.7	$15.9 \quad 16.1$	17	0042	－0048	$\begin{array}{ll}12 & 01 \\ 12 & 01\end{array}$	O6 0608	1912	23 24		

XYU OCTOBER 13, 14, 15 (SAT., SUN., MON.)

UT	ARIES	VENUS -3.9	MARS -1.5	JUPITER -2.4	SATURN +0.6	STARS		
${ }^{\text {d }}$ \%	G.H.A.	G.H.A., Dec.	G.H.A. Dec.	$\underset{0}{\text { G.H.A. },} \quad \underset{0}{\text { Doc. }}$	$\underset{\circ}{\text { G.H.A, }, ~ D e c ., ~}$	Nam*		Dec. a
1500	$83 \quad 23.6$	169 40.9 \$24 09.9	2613.1 N22 08.1	30730.2 N17 26.6	14744.6 S21 28.5	Acamor	31530.7	S40 20.5
	9826.0	18440.0	4116.208 .0	32232.8126 .7	16246.828 .4	Acherna	33538.7	S57 17.1
02	11328.5	39939.0	5619.307 .9	33735.4	$17748.9 \quad 28.4$	Acrux	17328.6	S63 02.7
03	12831.0	21438.0 - 09.9	$7122.4 \cdots 07.9$	35238.0 - 26.8	19251.1 - 28.4	Adhara	25525.4	S28 57.5
04	14333.4	$22937.0 \quad 09.9$	$8625.5 \quad 07.8$	$740.5 \quad 26.8$	$20753.3 \quad 28.3$	Aldiebaron	29108.4	N16 29.6
05	15835.9	24436.009 .9	10128.607 .8	2243.1 26.9	$22255.5 \quad 28.3$			
06	17338.3	$25935.1 \quad 52409.9$	11631.7 N 2207.7	3745.7 N17 26.9	23757.7 S21 28.2	Alioth	16635.4	N56 00.2
07	18840.8	$27434.1 \quad 09.9$	13134.8 07.6	$5248.3 \quad 26.9$	$25259.8 \quad 28.2$	Alkaid	15312.3	N49 21.2
S 08	20343.3	28933.1009 .9	14637.907 .6	$6750.9 \quad 27.0$	$26802.0 \quad 28.1$	Al No'it	2804.9	54700.5
A 09	21845.7	30432.1 - 09.9	16141.0 • 07.5	8253.5 . 27.0	$28304.2 \cdots 28.1$	Alnilam	27603.1	S 112.3
120	23348.2	31931.209 .9	17644.107 .4	$9756.1 \quad 27.1$	$29806.4 \quad 28.1$	Alphatd	21812.5	S 837.1
U İ	24850.7	$33430.2 \quad 09.9$	19147.207 .4	21258.6 27.1	$31308.5 \quad 28.0$			
$\mathrm{R}^{1} 12$	26353.1	34929.252409 .9	20650.2 N22 07.3	12801.2 N 2727.2	32810.7 S2I 28.0	Alphecca	12625.6	N26 44.5
D 13	27855.6	428.209 .9	$22153.3 \quad 07.2$	$14303.8 \quad 27.2$	$\begin{array}{llll}343 & 12.9 & 27.9\end{array}$	Alpheratz	35801.0	N29 02.7
A 14	29358.1	1927.209 .9	$23656.4 \quad 07.2$	158 06.4 27.3	$35815.1 \quad 27.9$	Altair	6225.0	N 850.7
$Y 15$	30900.5	$3426.3 \cdots 09.9$	$25159.5 \cdots 07.1$	17309.0 - 27.3	1317.3 - 27.8	Ankeo	35332.1	54221.4
16	32403.0	$4925.3 \quad 09.9$	26702.607 .0	$18812.6 \quad 27.3$	$2819.4 \quad 27.8$	Antares	11247.3	52624.8
17	33905.4	$6424.3 \quad 09.9$	$28205.7 \quad 07.0$	$20314.2 \quad 27.4$	$4321.6 \quad 27.7$			
18	35407.9	79 23.3 S24 09.9	29706.7 N22 06.9	21816.8 N17 27.4	5823.8 S21 27.7	Arct	14611.3	N19 13.6
19	910.4	9422.3 09.8	31211.806 .8	$23319.3 \quad 27.5$	$\begin{array}{lll}73 & 26.0 & 27.7\end{array}$	Atri	10805.0	S69 00.7
20	2412.8	10921.4	$32714.9 \quad 06.8$	$\begin{array}{lll}248 & 21.9 & 27.5\end{array}$	8828.1	Avior	23424.5	\$59 28.6
21	3915.3	$12420.4 \cdots 09.8$	34218.0 - 06.7	26324.5 - 27.6	10330.3 . . 27.6	Bellotrix	27849.7	N 620.6
22	5417.8	$13919.4 \quad 09.8$	$35721.0 \quad 06.6$	$\begin{array}{llll}278 & 27.1 & 27.6\end{array}$	$11832.5 \quad 27.5$	Betolgeuse	27119.2	N 724.4
23.	6920.2	15418.4 09.8	1224.1 06.6	$293 \quad 29.7 \quad 27.7$	$13334.7 \quad 27.5$			
00	8422.7	16917.352409 .8	$27 \quad 27.2$ N 2206.5		14836.9 S21 27.4	Canopus	26403.1	S52 41.3
01	9925.2	$\begin{array}{llll}184 & 16.5 & 09.7\end{array}$	4230.206 .5	$\begin{array}{lll}323 & 34.9 & 27.7\end{array}$	16339.027 .4	Capella	28058.9	N45 59.5
02	11427.6	19915.509 .7	5733.3 06.4	$\begin{array}{lll}338 & 37.5 & 27.8\end{array}$	17841.227 .4	Daneb	4943.4	N45 15.1
03	32930.1	$21414.5 \cdots 09.7$	$7236.4 \cdots 06.3$	35340.1 - 27.8	19343.4 - 27.3	Danebol	18250.8	N14 37.2
04	14432.6	$\begin{array}{lll}229 & 13.5 & 09.7\end{array}$	8739.406 .3	$842.7 \quad 27.9$	$20845.6 \quad 27.3$	Diphda	34912.6	51802.2
05	15935.0	24412.609 .6	10242.506 .2	$2345.3 \quad 27.9$	$22347.7 \quad 27.2$			
06	17437.5	259 II.6 52409.6	11745.6 N22 06.1	$3847.8 \mathrm{N17} 28.0$	23849.9 \$21 27.2	Dubhe	19411.9	N61 47.6
07	18939.9	27410.6 - 09.6	$13248.6 \quad 06.1$	$5350.4 \quad 28.0$	25352.127 .1	Elnath	27833.5	N28 36.1
00	20442.4	28909.609 .5	$14751.7 \quad 06.0$	$6853.0 \quad 28.1$	$26854.3 \quad 27.1$	anin	9054.5	NS1 29.3
509	21944.9	30408.7 - 09.5	16254.7 - 06.0	8355.6 . 28.1	28356.4 - 27.0	Enif	3403.8	N 950.1
U 10	23447.3	31907.709 .5	17757.805 .9	$9858.2 \quad 28.2$	29858.6	fomalhaut	1542.5	S29 40.3
N 11	24449.8	$\begin{array}{llll}334 & 06.7 & 09.4\end{array}$	19300.805 .8	$11400.8 \quad 28.2$	$31400.8 \quad 27.0$			
D 12	26452.3	34905.752409 .4	20803.9 N 2205.8	12903.4 N17 28.3	32903.0 \$21 26.9	acrux	37220.1	55703.6
A 13	27954.7	$404.8 \quad 09.3$	22306.905 .7	14406.028 .3	$34405.2 \quad 26.9$	Gianal	17609.8	S17 29.5
$Y 14$	29457.2	$1903.8 \quad 09.3$	$23810.0 \quad 05.6$	15908.628 .3	$35907.3 \quad 26.8$	Hadar	24912.5	S60 19.6
15	30959.7	$3402.8 \cdots 09.3$	25313.0 - 05.6	17411.2 - 28.4	14 09.5 . 26.8	Hamal	32819.6	N23 25.4
16	32502.1	$4902.8 \quad 09.2$	$26816.1 \quad 05.5$	$\begin{array}{lll}189 & 13.8 & 28.4\end{array}$	$2912.7 \quad 26.7$	Kaus Aust.	8406.5	\$34 23.5
17	34004.6	$6400.8 \quad 09.2$	$28319.1 \quad 05.5$	20416.428 .5	$4413.9 \quad 26.7$			
18	35507.1	$78 \quad 59.9 \$ 2409.1$	29822.2 N 2205.4	21919.0 N17 28.5	5916.0 S21 26.6	Kochab	13719.9	N74 11.2
19	1009.5	$9358.9 \quad 09.1$	$\begin{array}{lll}313 & 25.2 & 05.3\end{array}$	23421.628 .6	7418.2 26.6	Markab	1355.2	N15 09.6
20	2512.0	10857.909 .0	$\begin{array}{ll}328 & 28.3\end{array}$	$24924.2 \quad 28.6$	$8920.4 \quad 26.6$	Menkar	31432.4	N 403.4
21	4014.4	$12356.9 \cdots 09.0$	$34331.3 \cdots 05.2$	26426.8 - 28.7	10422.6 • 26.5	Menkent	14827.8	S36 19.5
22	5516.9	13856.008 .9	$\begin{array}{llll}358 & 34.3 & 05.2\end{array}$	$27929.4 \quad 28.7$	$11924.7 \quad 26.5$	Mioplacidus	22142.9	S69 40.6
23	7019.4	$15355.0 \quad 08.9$	$1337.4 \quad 05.1$	$29432.0 \quad 28.8$	$13426.9 \quad 26.4$			
1700	8521.8	16854.0 S24 08.8	2840.4 N22 05.0	30934.6 N 1728.8		Mirfok	30904.2	N49 50.0
01	20024.3	18353.0	$4343.4 \quad 05.0$	$324 \quad 37.2 \quad 28.9$	$16431.3 \quad 26.3$	Nunki	7619.5	\$26 18.6
02	11526.8	$19852.1 \quad 08.7$	$5846.5 \quad 04.9$	33939.8128 .9	$17933.4 \quad 26.3$	Peatock	5346.0	\$56 46.1
03.	13029.2	$21351.1 \cdots 08.7$	$7349.5 \cdots 04.9$	$35442.4 \cdots 29.0$	19435.6 - 26.2	Pollux	24347.9	N 2802.9
04	14531.7	22850.108 .6	8852.504 .8	$945.0 \quad 29.0$	$20937.8 \quad 26.2$	Procyan	24517.0	N 514.9
05	$160 \quad 34.2$	24349.100 .5	10355.604 .7	$2447.6 \quad 29.1$	$22440.0 \quad 26.2$			
06	17536.6	25848.152408 .5	11858.6 N 2204.7	3950.2 N 1729.1	23942.152126 .1	Rasalhogue	9622.4	N12 33.9
07	19039.1	27347.208 .4	13401.604 .6	5452.8129 .2	$25444.3 \quad 26.1$	Regulus	20801.3	N12 00.6
08	20541.5	28846.208 .4	$149 \quad 04.6 \quad 04.6$	6955.429 .2	$26946.5 \quad 26.0$	Rigel	28127.9	S 812.6
M 09	22044.0	$30345.2 \cdots 08.3$	16407.6 - 04.5	8458.0 - 29.2	28448.7 • 26.0	Rigil Kent.	14015.4	S60 47.7
- 10	23546.5	31844.208 .2	$\begin{array}{lll}179 & 10.7 & 04.4\end{array}$	$10000.6 \quad 29.3$	$29950.8 \quad 25.9$	Sabik	10232.2	\$15 42.9
N II	25048.9	$33343.3 \quad 08.2$	19413.704 .4	11503.229 .3	$31453.0 \quad 25.9$			
D 12	$265 \quad 51.4$	34842.352408 .1	20916.7 N 2204.3	13005.8 N17 29.4	32955.2 S 2125.8	Schedor	34959.8	N56 29.7
A 13	28053.9	341.308 .0	22419.704 .3	14508.429 .4	$34457.4 \quad 25.8$	Shauto	9645.2	S37 05.9
Y 14	29556.3	1840.308 .0	$\begin{array}{lll}239 & 22.7 & 04.2\end{array}$	16011.029 .5	$35959.5 \quad 25.8$	Sirius	25848.2	S16 42.1
15.	31058.8	$3339.4 \cdots 07.9$	25425.7 M 04.2	$17513.6 \cdots 29.5$	$1501.7 \cdots 25.7$	Spica	15849.2	\$11 06.9
16	32601.3	4838.4	$\begin{array}{lll}269 & 28.8 & 04.1\end{array}$	$19016.2 \quad 29.6$	$3003.9 \quad 25.7$	Suhail	22304.6	\$43 23.6
17	$342 \begin{array}{llll}342 & 03.7\end{array}$	$6337.4 \quad 07.7$	28431.804 .0	$20518.8 \quad 29.6$	4506.125 .6			
18	35606.2	78 36.4 S24 07.7	29934.8×2204.0		60 08.2 \$21 25.6	Vego	8050.8	N38 46.5
19	1108.7	9335.507 .6	31437.803 .9	$23524.0 \quad 29.7$	$7510.4 \quad 25.5$	Zuben'sbi	13724.4	S16 00.3
20	2611.1	$10834.5 \quad 07.5$	$32940.8 \quad 03.9$	$\begin{array}{lll}250 & 26.6 & 29.8\end{array}$	$9012.6 \quad 25.5$		S.H.A.	Mor. Poss.
21.	4113.6	$12333.5 \cdots 07.4$	34443.8 . 03.8	$26529.2 \cdots 29.8$	10514.8 . 25.4			${ }^{6} \mathrm{~m}$
22	5616.0	$\begin{array}{lll}138 & 32.5 & 07.3\end{array}$	$35946.8 \quad 03.8$	$28031.8 \quad 29.9$	12016.925 .4	Venus	8454.8	1244
23.	71.18 .5	$15331.6 \quad 07.3$	$1449.8 \quad 03.7$	$29534.4 \quad 29.9$	$13519.1 \quad 25.3$	Mars	30304.5	2206
Mer. Pos	$\begin{array}{cc} & \mathrm{m} \\ \hline \text { s. } 18 & 19.5 \end{array}$	$v-1.0 \quad d \quad 0.0$	$\begin{array}{lllll}v & 3.1 & d & 0.2\end{array}$	$\begin{array}{llll}v & 2.6 & d & 0.0\end{array}$	$\begin{array}{lllll}v & 2.2 & d & 0.0\end{array}$	Jupiter Saturn	$\begin{array}{r} 22409.6 \\ 6414.2 \end{array}$	$\begin{array}{r} 325 \\ 1404 \end{array}$

（OOn DECEMBER 15，16， 17 （SAT．，SUN．，MON．）

	SUN		MOON						Twilight		Sunrise	Moonrise								
UT				Naut．	Civi］	15	16	17	18											
		Dec．										］			b		n m	h m		
${ }^{6}$	－＇	－					，，	N 72	0821	1049										
1500	18117.7	S23 14.6	20731.4	11.5	524	18.9	5.354 .0	N 70	0801	0949										
01	19617.4	14.7	22201.9	11.5			5.154 .0	68	0746	0914										
02	21117.1	14.8	23632.4	11.4	24	29.3	5.054 .0	66	0733	0849	1029									
03	22616.8	15.0	25102.8	11.4	24	34.3	4.954 .0	64	0722	0830	0947	0926			1141					
09	24116.5	15.1	26533.2	11.3	24		4.854 .0	62	0712	0814	0919	O8 34	0950	1038	1058					
05	25616.2	15.2	28003.5	11.3	24	44.0	4.754 .0	60	0704	0800	0858	0802	0911	1000	1029					
06	27115.9	S23 15.4	29433.8	11.3	S24	48.7	4.554 .0	N 58	0656	0749	0841	0738.	0844	0933	1007					
07	286	15.5	30904.1	11.2	24	53.2	4.454 .0	56	0650	0739	0826	0719	0823	0912	0949					
$\bigcirc 08$	30115.3	15.6	$323 \quad 34.3$	11.2	24	57.6	4.454 .0	54	0643	0730	0813	0703	0805	0855	0933					
A 09	31615.0	15.8	33804.5	11.2	25		4.254 .0	52	0638	0721	0802	0650	0750	0840	0920					
T 20	33114.7	15.9	35234.7	21.1	25	06.2	4.054 .0	50	0633	0714	0753	0638	0737	0827	0908					
U 21	34614.4	16.0	704.8	21.1			4.054 .0	45	0621	0658	0732	0613	0710	0801	0844					
$\begin{array}{ll}\mathrm{R} & 12 \\ \mathrm{D} & 12\end{array}$	114.1	52316.2	2134.9	11.0	\＄25	14.2	3.953 .9	N 40	0611	0645	0715	0553	0649	0740	0824					
$\begin{array}{ll} \mathrm{D} & 13 \\ \hline \end{array}$	1613.8	16.3	3604.9	11.0	25	18.1	3.753 .9	35	0601	0633	0701	0537	0632	0722	0808					
¢ Y 14	$\begin{array}{lll}31 & 13.5\end{array}$	16.4	5034.9	11.0	25		3.653 .9	30	0553	0622	0649	0523	0617	0707	0754					
Y 15	$46 \quad 13.2$	16.6	6504.9	11.0	25		3.553 .9	20	0536	0604	0628	0459	0551	0642	0730					
16	6112.9	16.7	7934.9	10.9	25		3.453 .9	N 10	0520	0546	0609	0438	0529	0620	0709					
17	7612.6	16.8	9404.8	10.9	25	32.3	3.253 .9	0	0503	0529	0552	0419	0509	0559	0649					
18	9112.3	\＄23 16.9	10834.7	10.9	\＄25	35.5	3.253 .9	\＄ 10	0444	0511	0534	0400	0448	0539	0530					
19	10612.0	17.1	12304.6	10.8	25		3.053 .9	20	0422	0451	0535	0339	0426	0516	0609					
20	12111.7	17.2	13734.4	10．8			2.853 .9	30	0353	0426	0453	0316	0401	0451	0545					
21	13611.4	17.3	15204.2	10.8			2.853 .9	35	0334	0421	0441	0302	0346	0436	0530					
22.	15111.1	17.4	16634.0	10.8	25	47.3	2.753 .9	40	03 II	0353	0426	0246	0329	04 It	0514					
23	16610.8	17.5	18103.8	10.7	25	50.0	2.553 .9	45	0241	0330	0408	0227	0308	0357	0454					
1600	18110.5	\＄23 17．7	19533.5	10.7	S25	52.5	2.453 .9	S 50	0156	0301	0345	0203	0242	0331	0429					
1601	19610.2	17.8	21003.2	10.7	25	54.9	2.353 .9	52	0128	0246	0334	0152	0229	0318	0417					
02	21109.9	17.9	22432.9	10.7	25	57.2	2.153 .9	54	0044	0228	0322	0139	0215	0303	0403					
03	22609.6	18.0	23902.6	10.6	25	59.3	2.053 .9	56	III	0206	0308	0124	0158	0245	0347					
04	24109.3	18.1	25332.2	10.7	26	01.3	2.053 .9	58	III	0137	0251	0107	0138	0224	0328					
05	25608.9	18.3	26801.9	10.6	26	03.3	1.753 .9	S 60	m	0048	0231	0046	0112	0157	0304					
06	$\begin{array}{ll}271 & 06.6 \\ 286 & 08.3\end{array}$	S23 18.4 18.5	$\begin{array}{lll}282 & 31.5 \\ 297 & 01.1\end{array}$	10.6 10.5	526	05.0	1.753 .9													
08	$\begin{array}{ll} 286 & 08.3 \\ 301 & 08.0 \end{array}$	18.5	$\begin{array}{lll}297 & 01.1 \\ 321 & 30.6\end{array}$	10.5 10.6	26		$1.453 .9$	Lat．	Sunse	Civil	Na	15	16	17	18					
S 09	31607.7	18.7	32600.2	10.5	26	09.6	1.353 .9													
U 10	33107.4	18.8	34029.7	10.6	26	10.9	1.253 .9	。												
N 11	34607.1	18.9	35459.3	10.5	26	12.1	1.053 .9	N 72		1302	1530									
D 12	106.8	52319.0	928.8	10.5	S26	13.1	0.953 .9	N 70		1402	1550			\cdots						
A 12 γ	1606.5	19.2	2358.3	20.5		14.0	0.853 .9	68		1437	1605			－						
Y 14	3106.2	19.3	$38 \quad 27.8$	10.5	26	14.8	0.753 .9	66	1322	1502	1618									
15	$46 \quad 05.9$	19.4	5257.3	10.5	26	15.5	0.553 .9	64	1404	1521	1629	1130		－	1428					
16	6105.6	19.5	6726.8	10.4	261	16.0	0.453 .9	62	1432	1537	1639	1222	1250	1348	1511					
17	$76 \quad 05.3$	19.6	8156.2	10.5	26	16.4	0.353 .9	60	1453	1551	1647	1254	1329	1425	1540					
18	9105.0	52319.7	9625.7	10.5	526	16.7	0.153 .9	N 58	1510	1602	1655	1318	1356	1452	1602					
19	10604.7	19.8	11055.2	10.4	26	16.8	0.153 .9	56	1525	1612	1701	1338	1418	1512	1620					
20	12104.4	19.9	12524.6	10.5	26	16.9	0.154 .0	54	15 38	1621	1708	1354	1435	1530	1635					
21	13604.1	20.0	13954.1	10.4	26	16.8	0.354 .0	52	1549	16.30	1713	1408	1450	1544	1648					
22	15103.8	20.1	15423.5	10.5	26	16.5	0.354 .0	50	1558	1637	1718	1420	1504	1557	1659					
23	16603.5	20.2	16853.0	10.4	26	16.2	0.554 .0	45	1619	1653	1730	1445	1530	1623	1723					
1700	18103.2	52320.3	18322.4	10.5	526	15.7	0.654 .0	N 40	1636	1706	1740	1505	1552	1644	1742					
01	19602.9	20.4	19751.9	10.4		15.1	0.754 .0	35	1650	1718	1750	1522	1609	1701	1758					
02	21102.6	20.5	21221.3	10.5	26	14.4	0.954 .0	30	1702	1729	1759	1537	1624	1716	1811					
03	22602.2	20.6	22650.8	10.5		13.5	1.054 .0	20	1723	1747	1815	1601	1650	1742	1835					
04	24101.9	20.7	24120.3	10.4	261	12.5	1.154 .0	N 10	1742	1805	1831	1623	1712	1803	1955					
05	25601.6	20.8	25549.7	10.5	26	11.4	1.254 .0	0	1759	1822	1848	1643	1733	1823	1913					
06	27101.3	S23 20.9	27019.2	10.5	S26	10.2	1.454 .0	S 10	1817	1840	1907	1703	1754	1844						
07	28601.0	21.0	28448.7	10.5	26	08.8	1.454 .0	20	$18 \quad 36$	1900	1929	1724	1816	1905	1951					
08	30100.7	21.1	29918.2	10.5	26	07.4	1.654 .0	30	1858	1925	1958	1749	1841	1930	2014					
M 09	31600.4	21.2	31347.7	10.5	26	05.8	1.854 .0	35	1911	1940	2017	1804	1857	1945	2028					
$\bigcirc 10$	33100.1	21.3	32817.2	10.5	26	D4．0	1.854 .0	49	1926	1958	2040	1821	1914	2002	2043					
N 11	34559.8	21.4	34246.7	10.5	26	02.2	2.054 .0	45	1944	2021	2111	1841	1935	2022	2101					
D 12	059.5	\＄23 21.5	35716.2	10.6	S26	00.2	2.154 .0	S 50	2006	2051	2156	1907	20.02	2047	2124					
$\checkmark 13$	1559.2	21.5	1145.8	10.5		58.1	2.354 .0	52	2017	2106	2223	1919	2015	2100	2134					
$\bigcirc 14$	3058.9	21.6	2615.3	10.6	25	55.8	2.354 .0	54	2029	2124	2309	1934	2030	2114	2146					
15	4558.6	21.7	4044.9	10.6	25	53.5	2.554 .0	56	2043	2146	搰	1950	2047	2130	2200					
16	6058.3	21.8	5514.5	10.6	25	51.0	2.654 .0	58	2100	2215	新	2010	2108	2150	2216					
17	7558.0	21.9	6944.1	10.7	25	48.4	2.854 .0	S 60	2120	2304	H／	2036	2135	2214	2236					
18	9057.7	$523 \quad 22.0$	8413.8	10.6	S25	45.6	2.854 .0			UN										
19	10557.3	22.1	9843.4	10.7	25	42.8	3.054 .0													
20	12057.0	22.1	12313.1	10.7		39.8	3.154 .1	Day				Mer．		ge	Phase					
21	13556.7	22.2	12742.8	10.7	25	36.7	$3.254 .7$	Day	00^{n}			Upper								
22	15056.4	22.3	14212.5	10.7	25	33.5	3.454 .1		m s	m 57	${ }^{\text {h m }}$	${ }^{n} \mathrm{~m}$		$\stackrel{\square}{0}$						
23	16556.1	22.4	15642.2	10.8	25	30.1	3.454 .1	15	0511	0457	1155	1031	2256	28						
								16	0442	0428	1156	1121	2346	29						
	S．D．16．3	d 0.1	S．D．	14.7		14.7	14.7	17	0413	0359	1156	1211	2436	00						

