CELESTIAL NAVIGATION

USER`s GUIED For 14-Software Programs

Captain / ADEL MOSTAFA

To the Student & Navigator

With the hope that this work will stimulate an interest in Celestial Navigation and provide an acceptable guide to its software applications.

ontents	
Introduction	4
Group(1)	7
Rhumb Line (Lat. & Long.)	8
Solved application	8
Training applications	9
Answers	10
Rhumb Line (T.Co. & Dist.)	12
Solved application (1)	12
Solved application (2)	13
Training applications	13
Answers	14
Group(2)	15
Prayer Times	16
Solved application	17
Training applications	18
Answers	18
Compass Error (Time Method)	20
Solved application (1)	21
Solved application (2)	22
Training applications	23
Answers	24
Compass Error (Amplitude Method)	26
Solved application	27
Training applications	28
Answers	29
Star Chart	31
Solved application	32
Training applications	34
Answers	36
Meridian Passage	41
Solved application	42
Training applications	44
Answers	45

Contents (continue)	
Group(3)	49
Sun Sight	50
Solved application	50
Training applications	54
Answers	55
Sun Run Sun	58
Solved application	59
Training applications	64
Answers	66
Star Sight	69
Solved application	69
Training applications	71
Answers	73
Universal Method	76
Solved application	77
Training applications	81
Answers	84
Egyptian Method	87
Solved application	89
Training applications	91
Answers	93
Group(4)	99
Unknown Star Identification	100
Solved application	101
Training applications	102
Answers	103
Equation of Time; Coordinates of the Sun & Aries	106
Solved application	106
Training applications	107
Answers	108
Extracted pages from Nautical Almanac Tables 1990	

Introduction

Since the use of the ship's positioning system by GPS, a saying has emerged that *Celestial Navigation* science has ended its era and that the Sextant should be hidden inside museums.

To respond to this statement, we summarize the following:

<u>First:</u> *Celestial Navigation* is not limited to determining the position of the ship, but it goes beyond that limited mission to the following important topics:

- 1) Compass error setting
 - a) Measuring the direction of the sun during theoretical sunrise or sunset
 - b) Measure the direction of any low-altitude celestial body
- 2) Definition of different time measurement systems and the relationship between them.
- 3) Knowledge of the foundations of the system of rising and setting celestial bodies.
- 4) Knowledge of the foundations of the annual movement of the sun and its effect on the phenomenon of day and night.
- 5) Transforming the legal foundations of the times of the call to prayer for the five daily prayers into applied equations.

<u>Second:</u> According to the International Maritime Organization IMO, *Celestial Navigation* is still recognized as a method for determining the observed position of a ship, and determining the ship's position by GPS is a confirmatory system.

<u>Third:</u> The flight of many navigators from the application of *Celestial Navigation* in determining the position of the ship is attributed to several reasons:

- 1) Unfamiliarity with adjusting the marine sextant.
- 2) Unskilled in using the marine sextant to measure the altitude of celestial bodies.
- 3) Awe of the length of the calculations to reach the elements of the position line.
- 4) Unfamiliarity with determining the most likely observed location after drawing three or more position lines.

To solve this dilemma, many available computer programs only require the navigator to observe stars or planets and enter data to obtain the most likely observed position; thus, the solution can be summarized in that the navigators are trained to control and use the marine sextant.

It is worth noting that one of the most important duties of the navigator is to calculate the time of occurrence of any natural phenomenon for a sailing ship; Therefore, the navigator resorts to applying the method of successive approximation. This method consists of applying the following steps:

- 1) Calculate the future time of occurrence of the phenomenon using the ship's current position; which is known as the first approximation.
- 2) Finding the ship's position at the time that was found in the previous step.
- 3) Using the ship's last position to calculate the time of the future occurrence of the phenomenon again, this is known as the second approximation.

Of course, the mathematical position of the ship can be obtained using the sailing map, or analytically using the following equations:

d. Lat. = dist. Cos T. Co.
dep. = dist. Sin T. Co.
d. Long. = dep. / Cos (mean Lat.)

Natural phenomena that require finding their future time of occurrence while sailing; can be summarized in one sailing day as follows:

- 1) Morning civil twilight time to prepare for star observations.
- 2) Sunrise time to check the compass error (amplitude method).
- 3) The accurate time of the meridian passage of the sun to find the *Observed Latitude* of the ship at noon.
- 4) Sunset time to check the compass error (amplitude method).
- 5) Evening civil twilight time to prepare for star observations.

It is obvious that there are many programs that solve these requirements, but alone; any calculation of the time of the morning civil twilight, for example, without preparing the stars chart for observation. So the thought was to design several programs to solve these requirements; these programs are:

- A. The first group to solve general navigation problems:
- 1. A program for finding the arrival position with the knowledge of the starting position, the true course and the distance traveled.
- 2. A program for finding the distance and true course from the departed position to the arrived position.

- *B. The second group to solve the problems of daily celestial navigation activities:*
- 3. A program for finding the time for the next prayer; and the direction of the Qiblah at that time.
- 4. A program for finding Compass error (*Time Method*).
- 5. A program for finding Compass error (*Amplitude Method*).
- 6. A program to prepare for observing the stars (*Star Chart*) during the morning (or evening) twilight.
- 7. A program to find the time to the nearest second to cross the sun on the ship's meridian.
- C. The third group for solving basic celestial navigation problems:
- 8. A Program to solve the observation of the sun.
- 9. A program to solve two observations of the sun, with a long run in between, in order to obtain the observed (fixed) position.
- 10. A Program to solve the observation of a star
- 11. A program for finding the most probable observed position by observing a group of stars simultaneously in a *Universal Method*.
- 12. A program for finding the most probable observed position by observing a group of stars simultaneously in the *Egyptian Method*.
- D. The fourth group to solve problems related to celestial navigation:
- 13. A Program to identify a bright unknown star among the clouds.
- 14. A program for finding the coordinates of the sun and the point of the vernal equinox, as well as the equation of time.

It should be noted that these programs are available to my sons and fellow naval officers as a science to benefit from.

This is what was agreed upon by the work team, Eng. *Islam Badawy*, who designed these programs, and my dear son, *Ahmed Adel*, who designed the required graphics.

In the exercises; you shall use the following equipment's:

- Captain Adel Mostafa soft-ware programs which is given free.
- Pages of Nautical Almanac Tables for the year 1990 are accompanied for the concerned dates.
- Any Nautical Almanac Tables to extract:
 - Increments for Sun and Aries.
 - *Dip angle correction.*
 - Altitude corrections for sun and stars

Applications of these Soft-Ware Programs are explained separately in the next pages.

GROUP(1)

ELEMENTARY GENERAL NAVIGATION PROBLEMS

- Rhumb Line (Lat. & Long.)
- *Rhumb Line (T. Co & Dist.)*

1) Rhumb Line (Lat. & Long.)

To apply this software program_you must:

Calculate *distance run* in the interval of run.

It is designed to obtain <u>reached position</u> by the knowledge of initial position, true course and distance run.

The screen of the software program is given below

Solved Application:

Given:

- ZT₁ 2200 Mar. 12th;
- DR (31° 07`.1 N; 24° 45`.8 E)
- True Course 153°.0
- Speed 16.4 k

Find DR at ZT₂ 0400 Mar.13th.

Procedure of application Step (1): Obtaining interval of run

ZT_2	0400 Mar.13th
ZT ₁ (-)	2200 Mar. 12th
Interval	6h 00m

Step (2): Obtaining distance run Distance run = [6h 00m x 16.4k] = <u>98.4 Miles</u> Step (3): Apply software as follows;

RHUMB LINE (LAT + LO	NG)		
D.F 31	R.Lat	7.1	N v	
D.F	R.Long	45.8	E V	
Dis 98.4	tance Run			
	ie Course			
Lat2 = 2	9° 39.4' N	; Long2 = 25º	37.6' E	Submit
				Submit

*Result obtained DR*₀₄₀₀*March* 13th (29° 39`.4 N; 25° 37`.6 E)

TRAINING APPLICATIONS

Application (1)

Given:

- Initial DR (31° 15`.9 N; 115° 44`.7 W)
- Distance runs 167.5 M
- True course to steer 201°.0

Calculate Final DR?

Application (2)

Given:

- Initial DR (37° 15`.9 S; 177° 41`.7 W)
- Distance runs 367.8 M
- True course to steer 259°.0

Calculate Final DR?

Application (3)

Given:

- Initial DR (01° 15`.9 N; 077° 51`.3 E)
- Distance runs 452.6 M
- True course to steer 169°.0

Calculate Final DR?

Application (4)

Given:

- Initial DR (00° 10`.5 S; 179° 55`.0 E)
- Distance runs 76.0 M
- True course to steer 066°.0

Calculate Final DR?

ANSWERS

Application (1)

RHUMB LINE (LAT + LO	NG)		
D.R.Lat 31	15.9	N –	
D.R.Long	44.7	W	
Distance Run 167.5			
True Course			
Lat2 = 28° 39.5' N	; Long2 = 116	5° 54' W	Submit

Result obtained (28°39`.5 N; 116° 54`.0 W)

Application (2)

RHUMB LI	NE (LAT + LO	NG)		
	D.R.Lat 37	15.9	S -	
	D.R.Long	41.7	w •	
	Distance Run 367.8			
	True Course			
Lat	2 = 38° 26.1' S	;Long2 = 174	° 41.1' E	Submit

Result obtained (38°26`.1 S; 174° 41`.1 E)

Application (3)

RHUMB LINE (LAT + LO	NG)		
D.R.Lat	15.9	N v	
D.R.Long 77	51.3	E -	
Distance Run 452.6			
True Course			
Lat2 = 6° 8.4' N ; L	ong2 = 79° 1	L7.7' E	Submit

Result obtained (6°08`.4 *S*; 079° 17`.7 *E*)

Application (4)

RHUMB LINE (LAT + I	LONG)		
D.R.Lat	10.5		
D.R.Long	10.5	S 🔻	
179	55	E 🔻	
Distance Ru 76	IN		
True Course	e		
Lat2 = 0° 20.4' M	N ;Long2 = 178º	55.6' W	
			Submit

Result obtained (00°20`.4 N; 178° 55`.6 W)

2) *Rhumb Line (T. Co & Dist.)*

To apply this software program no previous calculations is needed:

It is designed to obtain *true course* and *distance run* from the initial position to the reached position.

The screen of the software program is given below

Solved Application (1):

Given:

DR position (38°26`.1 S; 174° 41`.6 E)

Observed position (38°30`.5 S; 174° 37`.1 E)

Calculate the shift and bearing of the observed position from the DR position. *Procedure of application*

RHUMB LINE (COURS	E + DISTANCE)	
D.R.Lat		
38	26.1	S 🕶
D.D.Long		
D.R.Long	41.6	
1/4	41.0	E
D.R.Lat		
38	30.5	S 🔻
D.R.Long		
174	37.1	E 🔻
(Distance: 5.6M	; TBg: 218.7º)	
		Submit

Apply software as follows

Result obtained:

Shift of the observed position from DR position is 5.6 Miles in the direction 218°.7

Solved Application (2):

Given:

Your vessel in DR position (38°30`.5 S; 174° 37`.1 E) received SOS signal from a ship in DR position (30°39`.1 S; 172° 38`.8 E).

Calculate distance run and true course to steer to arrive to that ship?

Apply software as follows

D.R.Long 174 37.1 E D.R.Lat 30 39.1 S D.R.Long 172 38.8	38	30.5	s 🔻
174 37.1 E • D.R.Lat 30 39.1 5 • D.R.Long	D.D.Long		
30 39.1 5 • D.R.Long		37.1	E 🔻
30 39.1 5 • D.R.Long	DPLat		
		39.1	S 🔻
172 38.8 E •	-		
	172	38.8	E 🔻

Result obtained: Distance 481.4 Miles; True course to steer 348°.3

TRAINING APPLICATIONS

Application (1) Given: DR position (28°23`.5N; 170° 13`.7 E) Observed position (28°32`.2N; 170° 17`.3 E) Calculate the shift and bearing of the observed position from the DR position.

Application (2) Given: Your vessel in DR position (42°39`.5 N; 174° 08`.1 W) received SOS signal from a ship in DR position (37°09`.1 N; 172° 38`.8 W). Calculate distance run and true course to steer to arrive to that ship?

ANSWERS

Application (1)

D.R.Lat	23.5		
	23.5	N 🔻	
D.R.Long	13.7	_	
170	13.7	E 🔻	
D.R.Lat			
28	32.2	N 🕶	
D.D.Long			
D.R.Long	17.3	E 🔻	
(Distance: 9	.3M ; TBg: 20°)		

Result obtained:

Shift of the observed position from DR position is 9.3 Miles in the direction 020°.0

Application (2)			
	RHUMB LINE (COURS	SE + DISTANC	CE)
	D.R.Lat	39.5	NV
	D.R.Long	8.1	W. T
	D.R.Lat	9.1	
	D.R.Long	5.1	
	172	38.8	W.
	(Distance: 337.	4M ; TBg: 168.3	3°)
			Submit

Result obtained: Distance 337.4 Miles; True course to steer 168°.3

GROUP(2)

DAILY CELESTIAL NAVIGATION ACTIVITIES

- Prayer Times
- Compass Error (Time Method)
- Compass Error (Amplitude Method):
- Star Chart
- Meridian Passage

3) Prayer Times

To apply this software programs you can proceed without any previous calculations. The software program is designed to obtain:

- El-Fagr Time and El-Qibla direction
- El-Sherouk Time (Sun rise)
- El-Zohr Time (Noon) and El-Qibla direction
- El-Asr Time and El-Qibla direction
- El-Maghrib Time (Sun set) and El-Qibla direction
- El-Esha Time and El-Qibla direction

The screen of the software program is given below

Prayer Times and El-Qibla D	irection	
	ZT	
	h m	S
	Date	
	DM	Y
	DR Latitude	
	•	N / S
	DR Longitude	
	•	E / W
	True Co. Speed	l Prayer
	° knots	

Solved Application (1):

ZT 1200; Z.N. (+2); Jul. 11th, 1990

- DR (35° 10`.1 N; 35° 41`.2 W)
- True Course 250°.0
- Speed 17 k
- Calculate El-Asr Time and El-Qibla direction

Solution

Apply software as follows;

Zone Time		
Hour	Minutes	Second
12	0	0
Date		
Day	Month	Year
11	7	1990
D.R.Lat		
35	10.1	N 🗸
D.R.Long		
35	41.2	W
True Course	Speed	Prayer Time
250	17	El-Asr 👻

ANSWER

El-Asr time 16h 20m 11s Kepla Direction 100°.1

TRAINING APPLICATIONS

Application (1)

ZT 0000; Z.N. (-9); August 3rd, 1990

- DR (31° 17`.1 N; 135° 33`.2 E)
- True Course 140°.0
- Speed 18.6 k
- Calculate El-Fagr Time and El-Qibla direction

Application (2)

ZT 1600; Z.N. (+9); October 2nd, 1990

- DR (41° 53`.1 S; 139° 53`.2 W)
- True Course 020°.0
- Speed 19.5 k
- Calculate El-Maghreb Time and El-Qibla direction

ANSWERS

```
Application (1)
```

Zone Time			
Hour	Minutes	Second	
00	00	00	
Date			
Day	Month	Year	
3	8	1990	
D.R.Lat	17.1	N	
D.R.Long			
135	33.2	E	
True Course	Speed	Prayer Time	
140	18.6	El-Fagr 🔹	
El-Fa	ع أذان الفجر) gr Time	موعد رفع) is: 03:35:11	

El-Fagr time 03h 35m 11s Kepla Direction 291°.7 Application (2)

Zone Time		
lour	Minutes	Second
6	0	0
Date		
ay	Month	Year
	10	1990
).R.Lat		
1	53.1	S 🗸
).R.Long		
139	53.2	W
rue Course	Speed	Prayer Time

El-Maghreb time 18h 24m 54s Kepla Direction 178°.2

4) Compass Error (Time Method)

To apply this software program:

In case of a star you must:

- Calculate [GHA star] at GMT of taking compass or gyro bearing or both.
- Extract [*Dec. star*]

In case of Sun you must:

- Calculate [*GHA_sun*] at GMT of taking compass or gyro bearing or both.
- Calculate [<u>Dec. sun</u>]

In both cases:

• Correct variation to <u>year 1990</u> for exercises; (<u>practically in deep sea it is</u> <u>corrected to the current year of sailing).</u>

The software program is designed to obtain;

- Compass Error
- Gyro Compass Error
- Deviation

The screen of the software program is given below

Compass Error	
	GHA of body at GMT
	•
	Dec. of body
	° N / S
	DR Latitude
	• N / S
	DR Longitude
	• E / W
	Compass Bearing
	0
	Gyro Bearing
	0
	Variation
	° E / W

Solved Application (1):

The star *Dubhe* was seen at low altitude on the western horizon. It is required to check the error of the compasses.

The following data were recorded;

- GMT: 23h 40m 40s on August 23rd; 1990
- DR: 29° 30`.0 N; 46° 40`.0 W
- Compass Bearing 330°.0
- Gyro Bearing 332°.0
- Variation (1978) 3°.0 E (decreasing 5` annually)

Calculate the error of each compass and the deviation.

Solution;

Step (1) Extract G.H.A.* & Dec*

G.H.A. γ	316° 58`.4		
Incr.	10° 11`.7		
SHA	194° 12`.9	Dec	61° 48`.2 N
G.H.A.*	161° 23`.0		

Step (2)

Calculate Var₁₉₉₀;

$$Var_{.1990} = Var_{.1978} - (5x12) = 3^{\circ}.0 \text{ E} - 1^{\circ}.0 = 2^{\circ}.0 \text{ E}$$

Step (3)

Apply software as follows;

COMPASS ERROR

GHA at GMT		
161	23	
Dec at GMT		
61	48.2	N
D.R.Lat		
29	30	N -
D.R.Long		
46	40	W
Compass BG.		
330		
Gyro BG.		
332		
Variation		
2	E	
C.error= 3	.6º E	
G.error= 1	.6º L	
Deviation=	= 1.6 º E	Submit

Answers: Compass Error [3°.6 E] & Deviation [1°.6 E] Gyro Error [1°.6 Low]

Solved Application (2):

Sun was seen at low altitude on the western horizon. It is required to check the error of the compasses. The following data were recorded;

- GMT: 01h 24m 28s on January 2nd; 1990
- DR: 31° 15`.0 S; 125° 22`.0 W
- Compass Bearing 259°.0
- Gyro Bearing 255°.5
- Variation (1986) 1°.4 E (decreasing 6` annually)

Calculate the error of each compass and the deviation.

Solution;

Step (1) Extract G.H.A.* & Dec*

G.H.A.	194° 03`.1	Dec.	22° 57`.4 S
Incr.	06° 07`.0	d. Corr.	0`.1
G.H.A.	200° 10`.1	C. Dec	22° 57`.3 S

Step (2)

Calculate Var₁₉₉₀;

Var. $_{1990}$ = Var. $_{1986}$ - (6`x4) = 1°.4 E - 0°.4 = 1°.0 E

Step(3)

Apply software as follows;

COMPASS ERROR		
GHA at GMT		
200	10.1	
Dec at GMT		
22	57.3	S 🗸
D.R.Lat		
31	15	s 🗸
D.R.Long		
125	22	W
Compass BG.		
259		
Gyro BG.		
255.5		
Variation		
1	E	
C.error=	2.2º W	
G.error=	1.3º L	
Deviatio	n= 3.2° W	Submit

Answers: Compass Error [2°.2 W] & Deviation [3°.2 W] Gyro Error [1°.3 Low]

TRAINING APPLICATIONS

Application (1)

The star *Altair* was seen at low altitude on the western horizon. It is required to check the error of the compasses. The following data were recorded;

• GMT: 19h 31m 29s on June 17th; 1990

- DR: 34° 10`.0 S; 144° 35`.0 E
- Compass Bearing 312°.0
- Gyro Bearing 308°.0
- Variation (1980) 3°.0 E (decreasing 3` annually)

Calculate the error of each compass and the deviation.

Application (2)

The star *Hadar* was seen at low altitude on the eastern horizon. It is required to check the error of the compasses. The following data were recorded:

The following data were recorded;

- GMT: 7h 32m 40s on February 17th; 1990
- DR: 41° 20`.0 S; 171° 20`.0 E
- Compass Bearing 155°.0
- Gyro Bearing 159°.5
- Variation (1986) 1°.5 W (increasing 15` annually) Calculate the error of each compass and the deviation.

Application (3)

Sun was seen at low altitude on the eastern horizon.

It is required to check the error of the compasses.

The following data were recorded;

- GMT: 14h 42m 14s on June 17th; 1990
- DR: 21° 10`.0 N; 125° 00`.0 W
- Compass Bearing 065°.5
- Gyro Bearing 069°.0

• Variation (1975) 0°.5 W (decreasing 4` annually) Calculate the error of each compass and the deviation.

Application (4)

Sun was seen at low altitude on the eastern horizon. It is required to check the error of the compasses.

The following data were recorded;

- GMT: 22h 35m 10s on August 23rd; 1990
- DR: 22° 05`.0 N; 120° 30`.0 E
- Compass Bearing 085°.0
- Gyro Bearing 083°.0
- Variation (1978) 1°.5 W (increasing 5` annually) Calculate the error of each compass and the deviation.

ANSWERS

Application (1)

COMPASS ERROR			
GHA at GMT			
261	4.5		
Dec at GMT			
8	50.5	N	•
D.R.Lat			
34	10	S	•
D.R.Long			
144	35	E	•
Compass BG.			
312			
Gyro BG.			
308			
Variation			
2.5	E		
C.error=	5.9° W		
G.error=	1.9º H		
			Submit
Deviatio	n= 8.4° W		Jubint

Answers: Compass Error [5°.9 W] & Deviation [8°.4 W] Gyro Error [1°.9 H]

Application (2))
-----------------	---

COMPASS ERROR		
GHA at GMT		
49	24.1	
Dec at GMT		
60	19.5	S 🔹
D.R.Lat		
41	20	S 🔹
D.R.Long		
171	20	E
Compass BG.		
155		
Gyro BG.		
159.5		
Variation		
2.5	W	
C.error=	5.3º E	
G.error=	0.8º L	
Deviation	1= 7.8 ° Ε	Submit

Answers: Compass Error [5°.3 E] & Deviation [7°.8 E] Gyro Error [0°.8 Low] Application (3)

COMPASS ERROR		
GHA at GMT		
40	21.1	
Dec at GMT		
23	23.2	N 🔻
D.R.Lat		
21	10	N -
D.R.Long		
125	0	W
Compass BG.		
65.5		
Gyro BG.		
69		
Variation		
0.5	E	
C.error=	4.1º E	
G.error=	0.6º L	
Deviation	n= 3.6º E	Submit

Answers: Compass Error [4°.1 E] & Deviation [3°.6 E] Gyro Error [0°.6 Low]

Application (4)

COMPASS ERROR		
GHA at GMT		
158	9	
Dec at GMT		
11	17.2	N 👻
D.R.Lat		
22	5	N -
D.R.Long		
120	30	E
Compass BG.		
085		
Gyro BG.		
083		
Variation		
2.5	W	
C.error=	2.4º W	
G.error=	0.4º H	
Deviation	ι= 0.1º Ε	Submit

Answers: Compass Error [2°.4 W] & Deviation [0°.1 E] Gyro Error [0°.4 H]

5) Compass Error (Amplitude Method):

It is a chance to check compasses and deviation at theoretical sunrise or sunset. The sun's bearing must be taken a certain situation of the sun's disc. This is correct only when the altitude of the lower limb of the sun's disc is nearly equals its semi-diameter.

Practically the navigator must calculate the *True Bearing* of the sun's disc at the phenomena *in-advance*. At the moment when he observes the compass bearing, he can obtain the compass error directly.

The software program is designed to obtain;

- True Bearing
- Compass Error
- Gyro Compass Error
- Deviation

The screen of the software program is given below

Solved Application

ZT 0400 April 2nd 1990;

- DR (30° 10`.1 N; 25° 19`.6 E)
- True Course 153°
- Speed 16 k
- Variation₁₉₉₀ 1°.3E

In order to check the compasses at theoretical sunrise phenomena; calculate the True Bearing of the sun at the phenomena in-advance.

At theoretical Sun Rise:

- Compass bearing was 094°.7
- Gyro bearing was 093°.6

Calculate the error of each compass and the deviation.

Solution;

Apply software as follows;

COMPAS	S ERROR A	mplit	tude		
	ZT	Hour 4	Min 0		
	Date	Day 2	Month 4	Year 1990	
	D.R.Lat	30	10.1	N -	
	D.R.Long	25	19.6	E 🔻	
	True Course		153		
	Speed		16		
	Phenomena		Sunrise 🔻		
	Compass BG	•	84.7		
	Gyro BG.		83.6		
	Variation		1.3	E	
	True Beari	ng= 84	.5°		
Cancel	C.error= 0	.2º W			Submit
	G.error= 0	.9º L			
	Deviation=	= 1.5° V	v		

Answer:

True Bearing at Sunrise 084°.5 Compass Error 0°.2 W Gyro Error 0°.9 Low Deviation 1°.5W

TRAINING APPLICATIONS

Application (1)

ZT 0400 August 23th 1990;

- DR (44° 11`.1 S; 30° 57`.8 E)
- True Course 100°
- Speed 16 k
- Variation₁₉₉₀ 2°.1E

In order to check the compasses at theoretical sunrise phenomena; calculate the True Bearing of the sun at the phenomena in-advance.

At theoretical Sun Rise:

- Compass bearing was 073°.0
- Gyro bearing was 074°.0

Calculate the error of each compass and the deviation.

Application (2)

ZT 1600 October 15th 1990;

- DR (39° 15`.4 N; 179° 31`.0 E)
- True Course 085°
- Speed 22 k
- Variation₁₉₉₀ 3°.0W

In order to check the compasses at theoretical sunrise phenomena; calculate the True Bearing of the sun at the phenomena in-advance.

At theoretical Sun Rise:

- Compass bearing was 261°.1
- Gyro bearing was 260°.7

Calculate the error of each compass and the deviation.

ANSWERS

Application (1)

COMPASS ERROR	Ampli	itude		
	Hour	Min		
ZT	4	00		
	Day	Month	Year	
Date	23	8	1990	
D.R.Lat	44	11.1	S 🔻	
D.R.Long	30	57.8	E 🔻	
True Course	e	100		
Speed		16		
Phenomena		Sunrise 🔻		
Compass BO	G.	73		
Gyro BG.		74		
Variation		2.1	E 🔹	
True Bear	ring= 73	3.8º		
Cancel C.error=).8º E			Submit
G.error=	D.2º H			
Deviation	= 1.3º \	w		

Answer: True Bearing at Sunrise 073°.8 Compass Error 0°.8 E Gyro Error 0°.2 H Deviation 1°.3 W

COMPASS ERROR	Ampli	tude		
ZT	Hour 16	Min 0		
Date	Day 15	Month 10	Year 1990	
D.R.Lat	39	15.4	N •	
D.R.Long	179	31	E 🔻	
True Cour	se	85]	
Speed		22		
Phenomena	3	Sunset 🔻]	
Compass I	BG.	261.1		
Gyro BG.		260.7		
Variation		3	W	
True Be	aring= 2!	5 9.1 º		
Cancel C.error=	2º W			Submit
G.error=	• 1.6 º H			
Deviatio	n= 1º E			

Answer:

True Bearing at Sunrise 259°.1 Compass Error 2°.0W Gyro Error 1°.6 High Deviation 1°.0 E

6) Star Chart

To apply this software programs you can proceed without any previous calculations.

The software program is designed to obtain:

Star Chart at *Evening or Morning civil twilight* (the middle time of taking star sights), Accompanied with a table of suitable stars to be observed:

Star Name	altitude	True Bg.
1	1	1
\downarrow	\downarrow	\downarrow

The screen of the software program is given below

Star Chart	
	Z.T.
	h m
	Date
	D M Y
	DR Latitude
	° N / S
	DR Longitude
	° E / W
	True Co. Speed Twilight
	° knots Morning
	Evening

Solved Application

At Z.T. 0005 January 2nd; 1990. Ship was in DR Position (32° 45`.0 S; 173° 20`.0 E)

- Steaming Speed 19.5 K
- Steering true course 333°.0

Calculate:

- Choose and name (7) suitable stars for observation at the morning twilight; referring to the *Air Navigation Tables* as a guide, giving their predicted altitudes & bearings (to the nearest degree).
- Draw a figure showing the horizon, true course of the ship and the chosen stars as a guide for observation.

Manual Calculations:

To find	G.M.T.	of The	Morning	Civil	Twilight.
10 10000	0	0, 1,00	1120111110	01111	

10 jina 0.1	n.i. of the morning even twinght.				
Z.T.	0005 Jan.2 nd				
Z.N. (-)	12				
G.D.	1205 Jan. 1 st				
1 st Approxi	imation	2 nd Approxi	mation		
L.M.T.	0436 Jan. 2 nd	L.M.T.	0436 Jan. 2nd		
Lat. Corr ^{<u>n</u>}	8	Lat. Corr ^{<u>n</u>}	4		
L.M.T.	0428 Jan. 2 nd	L.M.T.	0432 Jan. 2nd		
\pm Long. w/ E	1133	\pm Long. w/ E	1130		
G.M.T.1	1655 Jan. 1 st	G.M.T. ₂	1702 Jan. 1st		
G.D.	1205 Jan. 1 st	G.M.T1	1655 Jan. 1 st		
Interval	0450	Interval	0007 (+)		
Distance Run	$= (04h 50m) \times 19.5 k = 94.3 M$	Distance Run =	(00h 07m) x 19.5 k	= 2.3 M	
True Course	to steer 333.0	True Course to	steer 333.0		
<u>d. Lat.</u>	dep. M. latitude d. Long.	<u>d. Lat.</u> de	<u>р.</u> М.	d. Long.	
			latitude		
84`.0 N	42`.8 W 32°.15 50`.5 W	2`.0 N 1`.	0 W 31°.3	1`.2 W	
DR_1 Lat.	32° 45`.0 S Long. 173° 20.0 E	DR_2 Lat.	31° 21.0 S	Long.	172° 29`.5 E
d. La	t. 1° 24`.0 N d. Long. 0° 50`.5 W	d. Lat.	2.0 N	d. Long.	1`.2 W
DR ₂ Lat.	31° 21`.0 S Long. 172° 29.5 E	DR ₃ Lat.	31° 19.0 S	Long.	172° 28`.3 E

Calculating LH		
G.H.A. γ	356° 05`.1	
Incr.	0° 30`.1	_
G.H.A. γ	356° 35`.2	
± Long. E/ W	172° 28`.3	
L.H.A. γ	169° 03`.5	-

Extract The 7-Recommended Stars

	Star Name	Altitude	True Bearing
1	Arcturus	24°	047°
2	Antares	22°.5	108°
3	Acrux	56°	166°
4	Canopus	34°	224°
5	Sirius	27°.5	266°
6	Procyon	27°	295°
7	Regulus	44°	337°

Procedure of application

A. Application of the soft-ware program;

B. Results obtained:

No	Star Name	Altitude	True Bearing
1	Acrux	55° 59.8'	165° 28.3'
2	Adhara	35° 20'	254° 29.6'
3	Alphard	56° 36.4'	305° 26.5'
4	Antares	21° 53.2'	108° 2.7'
5	Arcturus	23° 55'	47° 0.1'
6	Atria	31° 13'	155° 25.4'
7	Avior	49° 50.9'	213° 0.4'
8	Canopus	34° 12.3'	224° 5.8'
9	Denebola	43° 11.6'	11° 57.7'
10	Gacrux	60° 51.1'	158° 39.1'
11	Gienah	70° 27.2'	47° 42.6'
12	Hadar	49° 51.9'	148° 43.9'
13	Menkent	54° 5.2'	109° 50.5'
14	Miaplacidus	47° 33'	194° 40.6'
15	Procyon	27° 11.7'	295° 1.7'
16	Regulus	44° 0.3'	336° 34.3'
17	Rigil Kentaurus	45° 23.8'	147° 33'
18	Sirius	28° 5.4'	266° 13.2'
19	Spica	53° 30.5'	64° 1.6'
20	Suhail	61° 59.6'	235° 37.3'
21	zubenelgenubi	38° 46.6'	85° 58.4'

TABLE OF ALTITUDES AND BEARINGS

TRAINING APPLICATIONS

Application (1)

At Z.T. 0140 December 15th; 1990. Ship was in DR Position (38° 25`.0 S; 159° 38`.0 E) Steaming Speed 18.4 knots

Steering True course 059°.0

Calculate:

- Choose and name (7) suitable stars for observation at the morning twilight; referring to the *Air Navigation Tables* as a guide, giving their predicted altitudes & bearings (to the nearest degree).
- Draw a figure showing the horizon, true course of the ship and the chosen stars as a guide for observation.

Application (2)

At Z.T. 1340 December 15th; 1990. Ship was in DR Position (38° 25`.0 S: 159° 38`.0 W)

was in DK roshion (38	25.05, 159.50.0 W
Steaming Speed	18.4 knots
Steering True cours	se 077°.0

Calculate:

- Choose and name (7) suitable stars for observation at the evening twilight; referring to the *Air Navigation Tables* as a guide, giving their predicted altitudes & bearings (to the nearest degree).
- Draw a figure showing the horizon, true course of the ship and the chosen stars as a guide for observation.

Application (3)

At Z.T. 1330 December 17th; 1990.

Ship was in DR Position (37° 40`.0 S;	160° 50`.0 E)
Steaming Speed	19.0 knots
Steering True course	099°.0

Calculate:

- Choose and name (7) suitable stars for observation at the evening twilight; referring to the *Air Navigation Tables* as a guide, giving their predicted altitudes & bearings (to the nearest degree).
- Draw a figure showing the horizon, true course of the ship and the chosen stars as a guide for observation.

Application (4)

At Z.T. 0130 December 16th; 1990.

Steaming Speed	19.0 knots
Steering True course	249°.0

Calculate:

- Choose and name (7) suitable stars for observation at the morning twilight; referring to the *Air Navigation Tables* as a guide, giving their predicted altitudes & bearings (to the nearest degree).
- Draw a figure showing the horizon, true course of the ship and the chosen stars as a guide for observation.

Application (5)

At Z.T. 1450 December 17th; 1990.

Ship was in DR Position (38° 32`.0 N;	154° 48`.0 E)
Steaming Speed	18.5 knots
Steering True course	209°.0

Calculate:

- Choose and name (7) suitable stars for observation at the evening twilight; referring to the *Air Navigation Tables* as a guide, giving their predicted altitudes & bearings (to the nearest degree).
- Draw a figure showing the horizon, true course of the ship and the chosen stars as a guide for observation.

ANSWERS:

Answer of Application (1)

Answer of Application (1)			
#	Star Name	Altitude	True Bg.
1	♦Regulus	39°	011°
2	Spica	31°	079°
3	♦Acrux	54°	148°
4	Canopus	55°	229°
5	♦Regil	25°	280°
6	Betelgeuse	23°	300°
7	Procyon	40°	323°

Answer of Application (2)

Ar	Answer of Application (2)		
#	Star Name	Altitude	True Bg.
1	♦Hamal	28°	010°
2	Aldebaran	20°	048°
3	Rigel	31°	075°
4	♦Canopus	38°	132°
5	Peacock	39°	219°
6	♦Fomalhaut	58°	273°
7	Alpheratz	20°	341°

Answer	of A	pplic	ation	(3)
--------	------	-------	-------	-----

Answer of Application (3)			
#	Star Name	Altitude	True Bg.
1	Aldebaran	21°	047°
2	Alpheratz	20°	340°
3	Canopus	40°	132°
4	Fomalhaut	57°	272°
5	Hamal	29°	008°
6	Peacock	38°	218°
7	Regil	32°	074°

Answer of Application (4)

Answer of Application (4)			
#	Star Name	Altitude	True Bg.
1	♦Acrux	54°	148°
2	Betelgeuse	22°	299°
3	Canopus	54°	230°
4	Procyon	39°	321°
5	♦Regil	25°	279°
6	♦Regulus	39°	010°
7	Spica	32°	078°

Answer of Application (5)

Answer of Application (5)			
#	Star Name	Altitude	True Bg.
1	Altair	40°	247°
2	♦Capella	23°	049°
3	Diphda	29°	151°
4	♦Fomalhaut	22°	179°
5	Hamal	47°	096°
6	Kochab	29°	344°
7	♦Vega	41°	292°

7) Meridian Passage

To apply this software programs you can proceed without any previous calculations.

The software program is designed to obtain:

- GMT of meridian passage of true sun to the nearest second.
- DR position corresponding to GMT of meridian passage of true sun.

The screen of the software program is given below

Meridian Passage of True Sur	1	
	Z.T.	
	h m	
	Date	
	D M Y	
	DR Latitude	
	° ` N /	S
	DR Longitude	
	° ` E/'	W
	True Co. Speed	
	° knots	

Solved Application

At Z.T. 0830; August 24th ; 1990 Ship was in D.R. position (40° 45`.0 S; 159° 42`.0 E) True Co. to Steer 113° Speed 19.5 knots Calculate the following: G.M.T. of meridian passage of the <u>True Sun</u> to the nearest second.
 DR at G.M.T. of meridian passage

Manual Calculations:

<i>To find G.M</i> Z.T.	<i>A.T. of Noon:</i> 0830 Aug. 24 th			
Z.N. (-)	11			
G.D.	2130 Aug. 23 rd			
1 st Approxi	mation	2 nd Approximatio	on	
L.M.T.	1203 Aug. 24 th	L.M.T.	1203 Aug. 24 th	
\pm Long ₁ . w/ E	1039	\pm Long. w/ E $\ $ (-)	1045	
G.M.T.1	0124 Aug. 24 th	G.M.T.2	0118 Aug. 24 th	_
G.D.	2130 Aug. 23 rd	G.M.T.1	0124 Aug. 24 th	
Interval	0354	Interval	0006 (-)	_
	$= (03h 54m) \times 19.5 \text{ k} = 76.1 \text{ M}$ o steer 113.0 <u>dep.</u> M. latitude <u>d. Long.</u>	True Course to steen	h 06m) x 19.5 k = 2.0 M r (113.0 + 180) = 293.0 ep. M. latitude	<u>d. Long.</u>
29`.7 S	70`.1 E 41°.0 92`.8 E	00`.8 N 1`	.8 W 41°.2	2`.4 W
DR ₁ Lat. d. Lat	5	d. Lat.	° 14`.7 S Long. 0`.8 N d. Long.	161° 14`.8 E 2`.4 W
DR_2 Lat.	41° 14`.7 S Long. 161° 14`.8 E	DR_3 Lat. 41	° 13`.9 S Long.	161° 12`.4 E

Accurate	GMT	of Noon	sight
		0.000.00	

LHA	360° 00`.0	
\pm Long. w/ E (-)	161° 12`.4	
GHA	198° 47`.6	
Tab. GHA	$194^{\circ} 22^{\circ}.0 \rightarrow$	01h
Incr.	$4^{\circ} 25^{\circ}.6 \rightarrow$	17m 42s
GMT	01h 17m 42s Aug. 24 th	

Procedure of application

A. Application of the soft-ware program;

MERIDIAN PASSAGE			
Zone Time			
Hour	Min		
8	30		
Date			
Day	Month	Year	
24	8	1990	
D.R.Lat			
40	45	S 🔻	
D.R.Long			
159	42	E 🔻	
True Course			
113			
Speed			
19.5			
41º 13.9 S			
161º 12.2 E			
Meridian GMT is: 11	H 17M 44S		Submit

B. Results obtained:

DR Lat.	41° 13`.9 S
DR Long.	161° 12`.2 E
GMT	01h 17m 44s

TRAINING APPLICATIONS Application (1) At Z.T. 0845; April 2nd; 1990 Ship was in D.R. position (38° 40`.0 N; 61° 49`.0 E) True Co. to Steer 033°.0 Speed 17.0knots Calculate the following: 1) G.M.T. of meridian passage of the True Sun to the nearest second. 2) DR at G.M.T. of meridian passage Application (2) At Z.T. 0915; October 15th; 1990 Ship was in D.R. position (43° 25`.0 S; 169° 40`.0 E) True Co. to Steer 144°.0 Speed 15.0 knots Calculate the following: 1) G.M.T. of meridian passage of the True Sun to the nearest second. 2) DR at G.M.T. of meridian passage Application (3) At Z.T. 0840; December 16th; 1990 Ship was in D.R. position (30° 38`.0 S; 109° 22`.0 W) True Co. to Steer 131° Speed 18.5 knots Calculate the following: 1) G.M.T. of meridian passage of the True Sun to the nearest second. 2) DR at G.M.T. of meridian passage. Application (4) At Z.T. 0910; Jun. 17th; 1990 Ship was in D.R. position (00° 05`.0 S; 48° 43`.0 W) True Co. to Steer 208°.0 Speed 14.0 knots Calculate the following: 1) G.M.T. of meridian passage of the True Sun to the nearest second. 2) DR at G.M.T. of meridian passage Application (5) At Z.T. 0935; February 17th; 1990 Ship was in D.R. position (25° 45`.0 S; 158° 40`.0 E) 105°.0 True Co. to Steer Speed 19.0 knots Calculate the following: 1) G.M.T. of meridian passage of the True Sun to the nearest second. 2) DR at G.M.T. of meridian passage

ANSWERS

Application No (1)

	MERIDIAN PASSAGE			
	Zone Time Hour 8	Min 45	_	
	Date Day 2	Month	Year 1990	
	D.R.Lat 38	40	N V	
	D.R.Long 61	49	E	
	True Course			
	Speed 17			
	39º 24.9 N			
	62º 26.5 E Meridian GMT	is: 7H 53M 56S		Submit
Results obtained				

DR Lat.	39° 24`.9 N
DR Long.	62° 26`.5 E
GMT	07h 53m 56s

Application No (2)

MERID	DIAN PASSAGE			
	Zone Time Hour 9	Min 15		
	Date Day 15	Month 10	Year 1990	
	D.R.Lat 43	25	S V	
	D.R.Long 169 True Course	40	E	
	144 Speed			
	15			
	48º 42.6 S 175º 12.7 E			
	Meridian GMT is: 0	0H 5M 8S		Submit
obtained:				

DR Lat.	48° 42`.6 S
DR Long.	175° 12`.7 E
GMT	0h 05m 08s

Results

OR Long.	175° 12`.7 E
GMT	0h 05m 08s

Application No (3)

	MERIDIA	N PASSAGE			
		Zone Time Hour 8	Min 40		
		Date Day	Month	Year 1990	
		D.R.Lat			
		30	38	S 💌	
		D.R.Long			
		109	22	w 👻	
		True Course			
		131			
		Speed			
		18.5			
		31º 20.4 S			
		108º 25.2 W			
		Meridian GMT is: 191	H 9M 25S	Si	ubmit
Results obtained:	•				

DR Lat.	31° 20`.4 S
DR Long.	108° 25`.2 W
GMT	19h 09m 25s

Application No (4)				
	MERIDIAN PASSAGE			
	Zone Time	Min 10		
	Date Day	Month 6	Year 1990	
	D.R.Lat	5	s 🔻	
	D.R.Long 48 True Course	43	W	
	208 Speed			
	14			
	0° 43.5 S 49° 3.5 W			
	Meridian GMT is: 1	5H 17M 5S		Submit

Results obtained:

DR Lat.	00° 43`.5 S
DR Long.	49° 03`.5 W
GMT	15h 17m 05s

Applicati	on No	(5)
-----------	-------	-----

MERIDIAN PASSAGE	E	
Zone Time	Min	
9	35	
Date Day	Month 2	Year 1990
D.R.Lat	45	s 🔻
D.R.Long	40	E
True Course		
105 Speed		
19		
25º 59.8 S		
159º 41.3 E	E	
Meridian G	MT is: 1H 35M 19S	Submit

Results obtained:

DR Lat.	25° 59`.8 S
DR Long.	159° 41`.3 E
GMT	1h 35m 19s

GROUP (3)

BASIC CELESTIAL NAVIGATION ACTIVITIES

- Individual Sun Sight
- Calculated observed Position (Sun Run Sun)
- Individual Star Sight
- Most Probable Observed Position (Universal Method)
- Most Probable Observed Position (Egyptian Method)

8) Sun Sight To apply this software program you must:

- Calculate [<u>GHA Sun</u>] and [<u>Dec. sun</u>] at GMT.
- Extract semi-diameter of the sun [SD] from daily page of nautical almanac tables.

The software program is designed to obtain <u>Intercept</u> & <u>True Bearing</u> of the sun.

The screen of the software program is given below

SOLVED APPLICATION

At Z.T. 1455 on October 14th ; 1990.

- Ship was in D.R. position (40° 15`.0 S; 161° 00`.0 W).
 - I.E. 1`.2 off the arc
 - Ht. of eye 12.7 m
 - Ch. error 3m 11s fast

Lower Limb of the Sun was observed as follows:

- Ch.Time 01h 51m 50s
- Sext.alt. 35° 35`.0

Find the elements of the position line by Intercept method.

Manual Calculations:

1st Step: To adjust time of G.M.T.

Z.T.	1455 Oct. 14 th
Z.N.	11 (+)
G.D.	0155 Oct. 15 th
Ch. Time	01h 51m 50s
Ch. Error (-)	03m 11s
G.M.T.	01h 48m 39s Oct. 15 th

2nd Step: To Extract L.H.A. & Dec.

G.H.A.	198° 30`.9	Dec.*	8° 21`.2 S
Incr.	12° 09`.8	d <u>c</u>	0`.7 (+)
G.H.A.	210° 40`.7	C.Dec.*	8° 21`.9 S
$\pm \log (E/W)$	161° 00`.0 (-)		
L.H.A.	49° 40`.7		

3rd Step: To Calculate C.Z.D

Cos (CZD) = Cos (LHA) Cos (Lat.) Cos (Dec.) +Sin (Lat.) Sin (Dec.) $Cos (CZD) = Cos (49^{\circ} 40^{\circ}.7) Cos (40^{\circ} 15^{\circ}.0) Cos (8^{\circ} 21^{\circ}.9) +Sin (40^{\circ} 15^{\circ}.0) Sin (8^{\circ} 21^{\circ}.9)$ $Cos (CZD) = 0.48862 + 0.09340 = 0.58261 \rightarrow CZD = 54^{\circ} 21^{\circ}.9$

4th Step: To obtain Intercept

Sext alt	35° 35`.0
I.E.	1`.2 (+)
Obs. Alt	35° 36`.2
Dip	6`.3 (-)
App alt	35° 29`.9
Corr.	14`.9 (+)
T. alt	35° 44`.8
90°	
T.Z.D.	54° 15`.2
C.Z.D.	54° 21`.9
Intercept	6`.7 T

5th Step: To find True Bearing

		T. Bg.	291°.8
		Az.	N 68°.1 W
Dec.	8° 21`.9 S	С	0.525 N
Lat.	40° 15`.0 S	В	0.193 S
L.H.A.	49° 40`.7	А	0.718 N

To apply the software program you must:

- Calculate [GHA _{Sun}] and [Dec. _{sun}] at GMT.
- Extract semi-diameter of the sun [SD] from daily page of nautical almanac tables.

The software program is designed to obtain <u>Intercept</u> & <u>True Bearing</u> of the sun.

The screen of the software program is given below

GMT		
00h	00m	00s
Sextant Alt.		
00°	00`.0	Limb
GHA at GMT		
00°	00`.0	
Dec.		
00°	00`.0	N / S
Index Error		
Height of Eye		
SD		
DR Latitude	<u>.</u>	
00°	00`.0	N / S
DR Longitude		
00°	00`.0	E / W

Procedure of application

A. Data extracted from NA tables

G.H.A.	198° 30`.9	Dec.	8° 21`.2 S	
Incr.	12° 09`.8	$d^{c}(+)$	0`.7	
G.H.A.	210° 40`.7	C. Dec.	8° 21`.9 S	S.D. 16`.1

B. Application of the soft-ware program;

GMT of Sight	48	39
	40	39
Sextant Alt	35	Limb Lower
	55	Limb Lower
GHA at GMT		
210	40.7	
Dec at GMT		
8	21.9	S 🔻
Index error of the Sex		
1.2	L	
Hieght of eye		
12.7		
SD		
16.1		
D.R.Lat		
40	15	S 🔻
D.R.Long		
161	0	w 🔻
	Int= 0° 6.6'T	
	TBg= 291.9º	

C. Results obtained:

Intercept	6`.6 T
T. Bg.	291°.9

TRAINING APPLICATIONS

Question (1)

At Z.T. 1520 on April 2nd; 1990;

Ship was in D.R. position (51° 15`.0 N; 174° 30`.0 W).

- I.E. 1`.5 on the arc
- Ht. of eye 15.5 m
- Ch. Error 3m 13s slow

Lower Limb of the Sun was observed as follows:

- Ch.Time 03h 18m 27s
- Sext.alt. 25° 18`.5

Find the elements of the position line by Intercept method.

Question (2)

At Z.T. 1250 on February 16th; 1990;

Ship was in D.R. position (51° 10`.0 N; 174° 40`.0 W).

- I.E. 1`.5 off the arc
- Ht. of eye 16.0 m
- Ch. Error 2m 41s slow

Lower Limb of the Sun was observed as follows:

• Ch.Time 0h 56m 03s

• Sext.alt. 25° 05`.2

Find the elements of the position line by Intercept method.

Question (3)

At Z.T. 1550 on June 16th ; 1990;

Ship was in D.R. position (51° 05`.0 N; 174° 35`.0 E).

- I.E. 1`.7 on the arc
- Ht. of eye 17.3 m
- Ch. Error 3m 55s fast

Lower Limb of the Sun was observed as follows:

- Ch.Time 03h 45m 50s
- Sext.alt. 42° 40`.0

Find the elements of the position line by Intercept method.

Question (4)

At Z.T. 1440 on August 24th; 1990;

Ship was in D.R. position (31° 15`.0 S; 179° 10`.0 W).

- I.E. 1`.8 on the arc
- Ht. of eye 17.0 m
- Ch. Error 4m 13s fast

Lower Limb of the Sun was observed as follows:

- Ch.Time 02h 46m 53s
- Sext.alt. 32° 25`.0

Find the elements of the position line by Intercept method.

Question (5) At Z.T. 1350 on December 16th ; 1990; Ship was in D.R. position (41° 07`.0 N; 034° 50`.0 W). • I.E. 1`.6 off the arc Ht. of eye • 15.0 m • Ch. Error 5m 18s fast Lower Limb of the Sun was observed as follows: . Ch.Time 03h 51m 28s 22° 10`.0 . Sext.alt.

Find the elements of the position line by Intercept method.

ANSWERS:

Application (1)

	SUN SIGHT			
	GMT of Sight ³ Sextant Alt	21	40	
	25	18.5	Limb Lower 🔻	
	GHA at GMT 229	33.2		
	Dec at GMT	10.8	N -	
	Index error of the Se -1.5			
	Hieght of eye			
	SD 16			
	D.R.Lat 51	15	N -	
	D.R.Long 174	30	w •	
		Int= 0° 5.5'T		
		TBg= 244.6º		Submit
Answer:				
Intercept	5`.5 T			

Intercept	5`.5 T
T. Bg.	244°.6

Application (2)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SUN SIGHT		
Sextant Alt 25 5.2 GHA at GMT 191 10.1 Dec at GMT 12 8.2 Idex error of the Sext 1.5 Height of eye 16 D.R.Lat 51 10 174 40 Www	GMT of Sight		
25 5.2 Limb Lower ▼ GHA at GMT 191 10.1 Dec at GMT 12 8.2 5 ▼ Index error of the Sext 1.5 Hieght of eye 16 SD 16.2 D.R.Lat 51 10 N ▼ D.R.Long 174 40 W ▼	00	58	44
GHA at GMT 191 10.1 Dec at GMT 12 8.2 Idex error of the Sext 1.5 Hieght of eye 16 SD 16.2 D.R.Lat 51 10 D.R.Long 174 40 Litt= 0° 8.4'T			
191 10.1 Dec at GMT 12 8.2 Idex error of the Sext 1.5 Hieght of eye 16 SD 16.2 D.R.Lat 51 10 J74 40 Int= 0° 8.4'T	25	5.2	Limb Lower
Dec at GMT 12 8.2 Index error of the Sext 1.5 Hieght of eye 16 5D 16.2 D.R.Lat 51 10 D.R.Long 174 40 Int= 0° 8.4'T	GHA at GMT		
12 8.2 S ▼ Index error of the Sext 1.5 Hieght of eye 16 16 5 D.R.Lat 5 51 10 D.R.Long 174 Int= 0° 8.4'T Submit	191	10.1	
12 8.2 S ▼ Index error of the Sext 1.5 Hieght of eye 16 16 5 D.R.Lat 5 51 10 D.R.Long 174 Int= 0° 8.4'T Submit	Dec at GMT		
Index error of the Sext 1.5 Hieght of eye 16 SD 16.2 D.R.Lat 51 174 40 W<▼		8.2	S -
1.5 Hieght of eye 16 SD 16.2 D.R.Lat 51 10 N ▼ D.R.Long 174 40 ₩ ▼ Int= 0° 8.4'T	Index error of the Sext	•	
16 SD 16.2 D.R.Lat 51 10 N ▼ D.R.Long 174 40 W ▼ Int= 0° 8.4'T		-	
16 SD 16.2 D.R.Lat 51 10 N ▼ D.R.Long 174 40 W ▼ Int= 0° 8.4'T	Hight of ove		
SD 16.2 D.R.Lat 51 10 N V D.R.Long 174 40 W V Int= 0° 8.4'T			
16.2 D.R.Lat 51 10 N ▼ D.R.Long 174 40 W ▼ Int= 0° 8.4'T			
D.R.Lat 51 10 N V D.R.Long 174 40 W V Int= 0° 8.4'T			
51 10 N V D.R.Long 174 40 W V Int= 0° 8.4'T			
D.R.Long 174 40 W •			[
174 40 W V		10	N V
Int= 0° 8.4'T			
Submit	174	40	W 👻
Submit			
TBg= 197.9° Submit		Int= 0º 8.4'T	
1Dy- 197.99		$TP_{0} = 107.00$	Submit
		1Dy- 137.30	

Answer:

Intercept	8`.4 T
T. Bg.	197°.9

Application (3)

	SUN SIGHT		
	GMT of Sight		
	3	41	55
	Sextant Alt		
	42	40	Limb Lower 🔻
	GHA at GMT		
	235	21	
	Dec at GMT		
	23	20.3	N T
	Index error of the S	ext	
	-1.7		
	Hieght of eye		
	17.3		
	SD		
	15.7		
	D.R.Lat		
	51	5	N -
	D.R.Long		
	174	35	E
		Int= 0° 2.7'A	
		TBg= 253.3º	Submit
A			
Answer:			
Intercept	2`.7 A		
1			

T. Bg. 253°.3

Application (4)

	SUN SIGHT		
	GMT of Sight		
	2	42	40
	Sextant Alt		
	32	25	Limb Lower
	GHA at GMT		
	220	6.3	
	Dec at GMT		
	10	53.1	N •
	Index error of the Sex	t	
	-1.8		
	Hieght of eye		
	17		
	SD		
	15.8		
	D.R.Lat		
	31	15	S –
	D.R.Long		
	179	10	w -
		Int= 0° 4.5'T	
			Submit
		TBg= 310.3º	Subinic
er:			

Answer:	
Intercept	4`.5 T
T. Bg.	310°.3

Application (5)

	SUN SIGHT		
	GMT of Sight		
	15	46	10
	Sextant Alt	10	Limb Lower
	GHA at GMT		
	57	38.3	
	Dec at GMT		
	23	19.5	S 🔹
	Index error of the S	Sext	
	Hieght of eye		
	SD		
	16.3		
	D.R.Lat	7	N V
	D.R.Long		
	34	50	w -
		Int= 0° 8.5'T	Submit
		TBg= 202.6º	Subinic
Answer:			
Intercept	8`.5 T		

9) Sun Run Sun

To apply this software program you can proceed without any previous calculations. This is clear from the screen of the program below, because [GHA_{Sun}] and [$Dec._{sun}$] at GMT₁ of the first sun sight and at GMT₂ of the second sun sight were calculated before when each sight was solved separately.

The software program is designed to obtain; the fixed position at GMT of the 2nd sun sight as follows;

• <u>Application (1):</u>

Make run from before noon sun sight to meridian sun sight to obtain fixed position at noon.

• <u>Application (2):</u>

Make run from Meridian sun sight to afternoon sun sight to obtain fixed position at the afternoon sight.

The screen of the software program is given below

Solved Application

Z. T. 1312 of October 14th; 1990, Ship was in DR position (34° 53`.0 S; 32° 25`.0 W). T. Co. 341°.0 Speed 18 knots I. E. 2.1 Off the arc Ht. of eye 10.5 m Ch. Error 1m 19s slow The 1st Sight of Sun's lower limb was observed as follows: Ch. Time 3h 12m 05s Sext. Alt. 57° 50`.0 The 2nd sight of Sun `s lower limb was observed as follows: Ch. Time 5h 20m 31s Sext. Alt. 36° 10`.0 Find the observed position at the time of the 2^{nd} observation.

Manual Calculations:

A. Solution of the 1st Sun sight: 1st Step: To Adjust GMT:

Z.T. ₁ Z.N. (+)	1312 Oct. 14 th 2
G.D.1	1512 Oct. 14 th
	_
Ch. Time 1	03 12 05
Ch. Error $(+)$	01 19
G.M.T. 1	15h 13m 24s Oct. 14 th
G.M.1.1	15n 13m 24s Oct. 14

2nd Step: To Extract LHA and Dec.

GHA	48° 29`.5	Dec	8° 12`.0 S
Incr.	3° 21`.0	d.corrn (+)	0`.2
GHA	51° 50`.5	C. Dec.	8° 12`.2 S
Long (-)	32° 25`.0		
LHA	19° 25`.5		

3rd Step: To Calculate C.Z.D:

Cos (CZD) = Cos (LHA) Cos (Lat.) Cos (Dec.) +Sin (Lat.) Sin (Dec.) $Cos (CZD) = Cos (19^{\circ} 25^{\circ}.5) Cos (34^{\circ} 53^{\circ}.0) Cos (8^{\circ} 12^{\circ}.2) +Sin (34^{\circ} 53^{\circ}.0) Sin (8^{\circ} 12^{\circ}.2)$ $Cos (CZD) = 0.76571 + 0.08160 = 0.84731 \rightarrow CZD = 32^{\circ} 04^{\circ}.8$

Sext. alt.	57° 50`.0
IE (+)	2`.1
Obs. alt.	57° 52`.1
Dip (-)	5`.7
App. alt.	57° 46`.4
$Corr^n$ (+)	15`.6
True alt.	58° 02`.0
90 (~)	
TZD	31° 58`.0
CZD	32° 04`.8
Inter.	6`.8 T

4th Step: To Correct Sextant Altitude and find Intercept:

5th Step: To Find True Bearing

LHA 19° 25`.5	А	1.977 N
Lat. 34° 53`.0 S	В	0.433 S
Dec 8° 12`.2 S	С	1.544 N
	Az.	N 38°.3 W
	T. Bg.	321°.7

B. Calculation of the 2nd DR Position:

Ch. Time ₂	05h 20m 31s	The GMT of the 2 nd Sun sight must
Ch. Error +	01m 19s	be ahead of the 1 st Sun sight; for this
G.M.T. 2	17h 21m 50s Oct. 14 th	we add 12h to G.M.T. ₂

G.M.T. ₂	17h 21m 50s Oct. 14 th 15h 13m 24s Oct. 14 th
G.M.T. 1	15h 13m 24s Oct. 14 th
Interval	02h 08m 26s

Distance Run = (02h 08m 26s) x 18.0 k = 38.5 M

Distance	True Co.	d. Lat.		dep.	
Distance		Ν	S	Е	W
6.6 T	321°.7	5.2			4.1
38.5	341°.0	36.4			12.5
41		41`.6 N	÷	16`.6	5 W

d. Long. = dep. / cos (m. Lat.) =16[°].6 /cos (34[°].5) \rightarrow where m. Lat. = [(34[°] 53[°].0 +34[°] 11[°].4)/2] d. Long. = 20[°].1 W

DR ₁ Position	Lat.	34° 53`.0 S	Long.	32° 25`.0 W
	d. Lat.	41`.6 N	d. Long.	20`.1 W
DR₂ Position	Lat.	34° 11`.4 S	Long.	32° 45`.1 W

C. Solution of the 2nd Sun sight: GMT: 17h 21m 50s Oct. 14th DR₂: (34° 11`.4 S; 32° 45`.1 W)

2nd Step: To Extract LHA and Dec.

GHA	78° 29`.8	Dec	8° 13`.8 S
Incr.	5° 27`.5	d.corrn (+)	0`.3
GHA	83° 57`.3	C.Dec.	8° 14`.1 S
Long (-)	32° 45`.1		
LHA	51° 12`.1		

3rd Step: To Calculate C.Z.D:

Cos (CZD) = Cos (LHA) Cos (Lat.) Cos (Dec.) + Sin (Lat.) Sin (Dec.) $Cos (CZD) = Cos (51^{\circ} 12^{\circ}.1) Cos (34^{\circ} 11^{\circ}.4) Cos (8^{\circ} 14^{\circ}.1) + Sin (34^{\circ} 11^{\circ}.4) Sin (8^{\circ} 14^{\circ}.1)$ $Cos (CZD) = 0.51295 + 0.08049 = 0.59344 \rightarrow CZD = 53^{\circ} 35^{\circ}.9$

4th Step: To Correct Sextant Altitude and find Intercept:

Sext. alt.	36° 10`.0
IE (+)	2`.1
Obs. alt.	36° 12`.1
Dip (-)	5`.7
App. alt.	36° 06`.4
$Corr^n$ (+)	14`.9
True alt.	36° 21`.3
90 (~)	
TZD	53° 38`.7
CZD	53° 35`.9
Inter.	2`.8 A

5th Step: To Find True Bearing:

LHA 51° 12`.1	Α	0.546 N
Lat. 34° 11`.4 S	В	0.186 S
Dec 8° 14`.1 S	С	0.360 N
	Az.	N 73°.4 W
	T. Bg.	286°.6

D. Plotting and Obtaining the Observed Position:

From Plotting Sheet:

DR ₂ Position	Lat.	34° 11`.4 S	Long.	32° 45`.1 W
	d. Lat.	03`.2 N	d. Long.	04`.8 E
Fix. Position	Lat.	34° 08`.2 S	Long.	32° 40`.3 W

Procedure of application

Data extracted from NA tables

*GMT*₁: 15h 13m 24s Oct. 14th

G.H.A.	48° 29`.5	Dec.	8° 12`.0 S	
Incr.	3° 21`.0	dc	(+) 0`.2	
G.H.A.	51° 50`.5	C. Dec.	8° 12`.2 S	S.D. 16`.1

GMT₂: 17h 21m 50s Oct. 14th

G.H.A.	78° 29.8	Dec.	8° 13`.8 S
Incr.	5° 27`.5	d <u>c</u>	(+) 0`.3
G.H.A.	84° 23`.0	C. Dec.	8° 14`.1 S

Application of Software;

SUN RUN SUN

FIRST SUN SIGHT			SECOND SUN SIGHT		
GMT of Sight			GMT of Sight	21	50
15	13	24		21	50
Sextant Alt			Sextant Alt		Limb Lower
57	50	Limb Lower 👻	36	10	Limb Lower
GHA at GMT			GHA at GMT		
51	50.5		83	57.3	
Dec at GMT			Dec at GMT		
8	12.2	S 🔹	8	14.1	S
SAILING INFORMAT	ION		SETUP SEXTANT		
D.R.Lat			Index error of the Sex	t	
34	53	S •	2.1		
D.R.Long			Hieght of eye		
32	25	w -	10.5		
True Course			SD		
341			16.1		
Speed					
18					
	Fixed	Postion(34° 8.1' S : 32°	40.3' W)		Submit
	Fixed	l Postion(34° 8.1' S ; 32°	40.3' W)		Submi

ANSWER; Calculated Observed Position (34° 08`.1 S; 32° 40`.3 W)

TRAINING APPLICATIONS

Application (1) Z. T. 1312 of June 16th; 1990, Ship was in DR position (34° 53`.7 N; 32° 25`.3 E). T. Co. 200°.0 Speed 18 knots I. E. Nil Ht. of eye 10.1 m Ch. Error 0m 14s slow The 1st Sight of Sun's lower limb was observed as follows: Ch. Time 11h 12m 05s Sext. Alt. 68° 52`.0 The 2nd sight of Sun `s lower limb was observed as follows: Ch. Time 2h 00m 50s 35° 22`.3 Sext. Alt. Find the observed position at the time of the 2^{nd} observation. Application (2) Z. T. 1112 of October 14th; 1990, Ship was in DR position (34° 53`.0 S; 179° 39`.0 W). T. Co. 326°.0 Speed 18.3 knots I. E. $2^{.6}$ off the arc Ht. of eye 14.5 m Ch. Error 3m 39s slow The 1st Sight of Sun's lower limb was observed as follows: Ch. Time 11h 02m 45s Sext. Alt. 61° 45`.0 The 2nd sight of Sun `s lower limb was observed as follows: Ch. Time 1h 50m 10s Sext. Alt. 50° 50`.0 Find the observed position at the time of the 2^{nd} observation. Application (3) Z. T. 1115 of April 2nd; 1990, Ship was in DR position (32° 24`.0 S; 179° 44`.0 E). T. Co. 059°.0 Speed 17.7 knots I. E. 2^{6} on the arc Ht. of eye 17.4 m Ch. Error 2m 39s fast The 1st Sight of Sun's lower limb was observed as follows: Ch. Time 11h 20m 35s 51° 13`.9 Sext. Alt. The 2nd sight of Sun `s lower limb was observed as follows: Ch. Time 2h 18m 45s 41° 17`.2 Sext. Alt. Find the observed position at the time of the 2^{nd} observation.

Application (4) Z.T. 1055 June 16th; 1990 Ship was in DR position (39° 20`.0 N ; 179° 38`.0 W); Ship was steaming as follows: True course to steer 282°.0 Speed 19.5 k Chronometer error 01m 19s fast Index error 2`.6 off the arc Height of eye 15.4 m 1st sun sight at Ch. Time **10h** 58m 40s when observed gave : Sextant alt. 69°05`.0 (L.L.) 2nd sun sight at Ch. Time 01h 22m 40s when observed gave: Sextant alt. 66°45`.0 (L.L.) Find the observed position at the time of the 2^{nd} sight. Application (5) Z.T. 1055 January 2nd; 1990 Ship was in DR position (43° 40`.0 S ; 179° 54`.0 E); Ship was steaming as follows: True course to steer 077°.0 Speed 20.7 k Chronometer error 01m 49s slow Index error $2^{0}.0$ off the arc

 $\begin{array}{cccc} \mbox{Height of eye} & 18.4 \ m \\ 1^{st} \mbox{ sun sight at Ch. Time} & 10h \ 58m \ 40s & when \ observed \ gave: \\ Sextant \ alt. & 65^{\circ} \ 15^{\circ}.0 \ (L.L.) \\ 2^{nd} \ sun \ sight \ at \ Ch. \ Time} & 01h \ 22m \ 40s & when \ observed \ gave: \\ Sextant \ alt. & 63^{\circ} \ 02^{\circ}.9 \ (L.L.) \end{array}$

Find the observed position at the time of the 2^{nd} sight.

ANSWERS:

Application No) (1)			
SUN RUN SUN				
FIRST SUN SIGHT	r		SECOND SUN SIGHT	
GMT of Sight			GMT of Sight	
11	12	19	14 1	4
Sextant Alt			Sextant Alt	
68	52	Limb Lower 💌	35 22.3	Limb Lower 👻
GHA at GMT			GHA at GMT	
347	56		30 6.9	
Dec at GMT			Dec at GMT	
23	21	N •	23 21.2	N
SAILING INFORM	ATION		SETUP SEXTANT	
D.R.Lat			Index error of the Sext	
34	53.7	N -	0	
D.R.Long			Hieght of eye	
32	25.3	E	10.1	
True Course			SD	
200			15.7	
Speed				
18				
				C.L
	Fi	ixed Postion(34° 15.5' N ; 31	• 45.1'E)	Submit
			-	

ANSWER: Fixed Position (34° 15`.5 N; 31° 45`.1E)

Application No ((2)					
SUN RUN SUN						
FIRST SUN SIGHT			SECOND SUN SIGHT			
GMT of Sight			GMT of Sight			
23	6	24	1	53	49	
Sextant Alt			Sextant Alt			
61	45	Limb Lower	▼ 50	50	Limb	Lower -
GHA at GMT			GHA at GMT			
170	6.6		211	58.3		
Dec at GMT			Dec at GMT			
8	19.5	S	• 8	22.1	S	-
SAILING INFORMA D.R.Lat	TION		SETUP SEXTANT Index error of the Sex	t		
34	53	S	• 2.6			
D.R.Long			Hieght of eye			
179	39	w	• 14.5			
True Course			SD			
326			16			
Speed						
18.3						
	Fi	xed Postion(34º 16.6' S	;180° 14.8'W)			Submit

ANSWER: Fixed Position (34° 16`.6 S; 179° 45`.2 E)

App	lication No (.	3)						
	RUN SUN							
E	RST SUN SIGHT				SECOND SUN SIGHT			
G	MT of Sight				GMT of Sight			
2	-	17	56		2	16	6	
S	extant Alt				Sextant Alt			
5	1	13.9	Limb Lower	•	41	17.2	Limb	Lower 🔻
G	GHA at GMT				GHA at GMT			
16	58	32			213	5.1		
D	ec at GMT				Dec at GMT			
4		43.8	N	•	4	46.7	N	•
	AILING INFORMAT	ION			SETUP SEXTANT			
	.R.Lat				Index error of the Sext			
3		24	S	•	-2.6			
	.R.Long		-		Hieght of eye			
1		44	E	•	17.4			
	rue Course				SD			
0					16			
	peed							
1	1.1							
		Fixed Pos	stion(31° 50.2'	S;180º 33.	.2'E)			Submit
		1 (21	0.502.0.0	1700 000	O WA			

Application No (4)

FIRST SUN SIGH	17		SECOND SUN SIGHT	
	11			
GMT of Sight			GMT of Sight	
22	57	21	1 21	21
Sextant Alt			Sextant Alt	
69	5	Limb Lower 🔻	66 45	Limb Lower -
GHA at GMT			GHA at GMT	
164	10		200 9.6	
Dec at GMT			Dec at GMT	
23	22	N	23 22.2	N
SAILING INFOR	MATION		SETUP SEXTANT	
D.R.Lat			Index error of the Sext	
39	20	N -	2.6	
D.R.Long			Hieght of eye	
179	38	w -	15.4	
True Course			SD	
282			15.7	
Speed				
19.5				
				Submit

ANSWER: Fixed Position (39° 32`.2 N; 179° 17`.5 E)

Application No (5)					
SUN RUN SUN						
FIRST SUN SIGHT GMT of Sight			SECOND SUN SIGHT GMT of Sight			
23	0	29	1	24	29	
Sextant Alt			Sextant Alt			
65	15	Limb Lower -	63	2.9	Limb	Lower -
GHA at GMT			GHA at GMT			
164	11.2		200	10.4		
Dec at GMT			Dec at GMT			
22	57.8	S •	22	57.3	S	•
D.R.Lat 43 D.R.Long 179 True Course 77 Speed 20.7	40	S V	Index error of the Sext Plieght of eye 18.4 SD 16.3	:		
2017	Fixed Po	ostion(43°25.5'S; 180°4	5.3' E)			Submit
ANSWER: Fixed	l Position (43	° 25`.5 S; 179° 14	`.7 W)			

10) Star Sight

To apply this software program you must:

- Calculate [*GHA star*] at GMT in-advance.
- Extract [*Dec. star*].

The software program is designed to obtain <u>Intercept</u> & <u>True Bearing</u> of a star. The screen of the software program is given below

Solved Application

At Z.T.0602 on January 3rd; 1990 Ship was in D.R. position (41° 10`.0 N; 171° 05`.0 E).

- I.E. 2`.2 on the arc
- Ht. of eye 15 m
- Ch. error nil

Star **Regulus** was observed as follows:

- Ch.Time 6h 57m 45s
- Sext.alt. 40° 47`.1

Find the elements of the position line by Intercept method.

Manual Calculations:

1st Step: To Adjust Time Of G.M.T.

Z.T. Z.N.	06 02 Jan. 3 rd
G.D.	19 02 Jan. 2 nd
Ch. Time Ch. Error	6h 57m 45s 0 00
G.M.T.	18h 57m 45s Jan. 2 nd

2nd Step: To Extract L.H.A. & Dec.

G.H.A.	012° 06`.7			
Incr.	14° 28`.6			
SHA	208° 02`.0	Dec.*	N 12°	00`.9
G.H.A.	234° 37`.3	-		
long (+)	171° 5`.0			
L.H.A.	045° 42`.3			

3rd Step: To Calculate C.Z.D

 $\begin{aligned} &\text{Cos} \ (\text{CZD}) = \text{Cos} \ (\text{LHA}) \ \text{Cos} \ (\text{Lat.}) \ \text{Cos} \ (\text{Dec.}) + \text{Sin} \ (\text{Lat.}) \ \text{Sin} \ (\text{Dec.}) \\ &\text{Cos} \ (\text{CZD}) = \text{Cos} \ (45^{\circ} \ 42^{\circ} .3) \ \text{Cos} \ (41^{\circ} \ 10^{\circ} .0) \ \text{Cos} \ (12^{\circ} \ 00^{\circ} .9) + \text{Sin} \ (41^{\circ} \ 10^{\circ} .0) \ \text{Sin} \ (12^{\circ} \ 00^{\circ} .9) \\ &\text{Cos} \ (\text{CZD}) = 0.51420 + 0.09398 = 0.65123 \rightarrow \text{CZD} = 49^{\circ} \ 21^{\circ} .9 \end{aligned}$

4th Step: To Correct Sextant Altitude

Sext alt	40° 47`.1
I.E.	- 2`.2
Obs. Alt	40° 44`.9
Dip	- 6`.8
App alt	40° 38`.1
Corr.	- 1`.1
T. alt	40° 37`.0
90°	90°
T.Z.D.	49° 23`.0
C.Z.D.	49° 21`.9
Intercept	1`.1 A

5 th Step:	To Find Ti	rue Bearing
-----------------------	------------	-------------

L.H.A.	045° 42`.3		А	0.853 S
Lat.	N 41° 10`.0		В	0.297 N
Dec.	N 12° 00`.9	-	С	0.556 S
		-	Az.	S 67°.3 W
			T. Bg.	247°.3

Procedure of application

A. Obtain GMT

GMT: 18h 57m 45s July 31st

B. Data extracted from NA tables

G.H.A.	012° 06`.7			
Incr.	14° 28`.6			
SHA	208° 02`.0	Dec.	N 12°	00`.9
G.H.A.	234° 37`.3			

C. Apply soft-ware program as follows;

GMT of S			
18	57	45	
Sextant	Alt		
40	47.1		
GHA at (GMT		
234	37.3		
Dec at G	MT 0.9	N •]
	or of the Sext		J
-2,2	of the Sext		
Hieght o ¹⁵ D.R.Lat	f eye		
41	10	N -]
D.R.Lon	1		
171	5	E 🔻]
	Int= 0º 1.1		,
			Subn
	TBg= 247.3	D	3001

Answer: Intercept 1`.1 A True Bearing 24

1`.1 Away 247°.3

TRAINING APPLICATIONS Application (1)

At ZT 0500 Oct.15th; 1990. Ship was in D.R. position (36° 15`.0 S; 175° 19`.0 E). I. E. 1`.7 off the arc Ht. of eye 15.4 m Ch. Error 7m 41s slow The star **Aldebaran** was observed as follows: Ch. Time 05h 05m 06s Sext.alt. 31° 13`.4

Find the elements of the position line by Intercept method.

Application (2) At ZT 0510 Oct.15th; 1990 Ship was in D.R. position (36° 20`.0 S; 175° 20`.0 E). I. E. 1`.7 on the arc Ht. of eye 16.0 m Ch. Error 8m 44s fast The star Acamar was observed as follows: Ch.Time 05h 21m 31s Sext.alt. 49° 43`.4 Find the elements of the position line by Intercept method.

Application (3) At ZT 0505 Oct.15th; 1990 Ship was in D.R. position (36° 19`.0 S; 175° 21`.0 E). I. E. 2`.4 on the arc Ht. of eye 16.1 m Ch. Error 9m 33s slow The star **Ankaa was** observed as follows: Ch.Time 05h 03m 14s Sext.alt. 23° 37`.9 Find the elements of the position line by Intercept method.

Application (4) At ZT 0512 Oct.15th; 1990 Ship was in D.R. position (36° 14`.0 S; 175° 17`.0 E). I. E. 2`.8 on the arc Ht. of eye 16.8 m Ch. Error 9m 45s fast The star **Elnath was** observed as follows: Ch. Time 05h 22m 32s Sext.alt. 23° 48`.4 Find the elements of the position line by Intercept method.

Application (5) At ZT 0515 Oct.15th; 1990 Ship was in D.R. position (36° 16`.0 S; 175° 16`.0 E). I. E. 2`.5 off the arc Ht. of eye 16.6 m Ch. Error 3m 39s fast The star **Miaplacidus was** observed as follows: Ch. Time 05h 16m 26s Sext.alt. 49° 50`.8 Find the elements of the position line by Intercept method.

ANSWERS:

Application (1)

17 12 47 Sextant Alt 31 13.4 GHA at GMT 212 19.8 Dec at GMT 15 29.7 N ▼ Index error of the Sext 1.7 Hieght of eye 15.4 D.R.Lat 36 15 S ▼	GMT of Sight		
31 13.4 GHA at GMT 19.8 212 19.8 Dec at GMT 29.7 16 29.7 Index error of the Sext 1.7 Hieght of eye 15.4 36 15 D.R.Lat 5.4	17	12	47
GHA at GMT 212 19.8 Dec at GMT 29.7 16 29.7 Index error of the Sext 1.7 Hieght of eye 1.5.4 D.R.Lat 36 D.R.Long 15	Sextant Alt		
212 19.8 Dec at GMT 16 29.7 N ▼ Index error of the Sext 1.7 Hieght of eye 15.4 D.R.Lat 36 15 S ▼	31	13.4	
212 19.8 Dec at GMT 16 29.7 N ▼ Index error of the Sext 1.7 Hieght of eye 15.4 D.R.Lat 36 15 S ▼	GHA at GMT		
16 29.7 N Index error of the Sext 1.7 Hieght of eye 15.4 D.R.Lat 36 15 S D.R.Long		19.8	
Index error of the Sext 1.7 Hieght of eye 15.4 D.R.Lat 36 15 S V. D.R.Long	Dec at GMT		
1.7 Hieght of eye 15.4 D.R.Lat 36 15 S • D.R.Long	16	29.7	N -
Hieght of eye 15.4 D.R.Lat 36 15 S V D.R.Long		xt	
15.4 D.R.Lat 36 15 5 • D.R.Long	1.7		
D.R.Lat 36 15 S V D.R.Long	Hieght of eye		
36 15 S • D.R.Long	15.4		
D.R.Long	D.R.Lat		
	36	15	S 🔻
175 19 F 🔻	D.R.Long		
	175	19	E 🔻
	I	nt= 0° 1.6'A	
Int= 0º 1.6'A	-	Bg= 328.7º	

Answer: Intercept 1`.6 A True Bearing 328°.7

```
Application (2)
```

STAF	R SIGHT			
	GMT of Sight			
	17	12	47	
	Sextant Alt			
	49	43.4		
	GHA at GMT			
	236	41.8		
	Dec at GMT			
	40	20.2	S 🔻	
	Index error of the Sext			
	-1.7			
	Hieght of eye			
	16			
	D.R.Lat			
	36	20	s 🔻	
	D.R.Long			
	175	20	E	
	Int=	0º 0.9'A		
	TBg=	247.90		Submit

Answer: Intercept 0`.9 A True Bearing 247°.9 Application (3)

STAR SIGHT			
GMT of Sight			
17	12	47	
Sextant Alt			
23	37.9		
GHA at GMT	42.9		
	1213		
Dec at GMT			
42	21.2	S 🔻	
Index error of the Sext -2.4			
Hieght of eye			
D.R.Lat			
36	19	S 🔻	
D.R.Long			
175	21	E 🔻	
Int	= 0° 2.2'A		
ТВд	J= 233.7º		Submit

Answer: Intercept 2`.2 A True Bearing 233°.7

```
Application (4)
```

STAR SIGHT			
GMT of Sight			
17	12	47	
Sextant Alt			
23	48.4		
GHA at GMT			
199	45		
Dec at GMT			
28	36.1	N -	
Index error of the Sext			
-2.8			
Hieght of eye			
16.8			
D.R.Lat			
36	14	s 👻	
D.R.Long			
175	17	E 🔻	
Int=	= 0º 2.3'A		
ТВд	= 345.60		Submit

Answer: Intercept 2`.3 A True Bearing 345°.6 Application (5)

STAR SIGHT			
GMT of Sight			
17	12	47	
Sextant Alt			
49	50.8		
GHA at GMT	55.1		
Dec at GMT			
69	40.4	S 🔻	
Index error of the Sext			
Hieght of eye			
D.R.Lat			
36	16	S 🔻	
D.R.Long	16	_	
1/5	10	E 🔻	
Int	= 0° 0.7'A		
			Submit
ТВд	= 1590		

Answer: Intercept 0`.7 A True Bearing 159°.0

11) UNIVERSAL METHOD

To apply this software program you must:

- Extract <u>SHA</u> & <u>Dec.</u> for each star concerned.
- Calculate <u>GHA*</u>= [GHA γ + SHA] for each star concerned at its GMT.

	Star (1)	Star (2)	Star (3)	Star (4)	Star (5)
GMT					
GHA γ					
(+)Incr. y					
(+)S.H.A.					
GHA *					

• Arrange the data as given below to avoid mistakes of entry.

Co.	True Course
Sp.	Speed
I.E.	Index Error
H.E.	Height of eye
DRL	DR Latitude
DRG	DR Longitude
RT	Required time

Star	1	2	3	4	5
GMT					
Sext. Alt.					
GHA *					
Dec.					

The Input data are introduced in two steps;

Main data then press star number to introduce parameters of each one.

The following is the screen of the Universal Method software program:

The software program is designed to obtain the most probable observed position MPOP; at the required time of fixing.

SOLVED APPLICATION

•

Z.T. 0407 January 2nd; 1990 Ship was in DR position (31° 19`.0 S; 172° 25`.0 E).

- True Course to steer 333°
 - Steaming Speed 16.5 k
- I.E. 1`.3 on the arc
- Ht. of eye 19.0 m

The following are **7-Star** sights; were observed at morning twilight as follows:

Star Name	G.M.T. Jan. 1 st	Sext. Alt.
Arcturus	16h 51m 38s	22° 08`.5
Antares	16h 54m 10s	21° 24`.3
Acrux	16h 57m 43s	56°19`.5
Canopus	17h 00m 00s	34° 49`.1
Sirius	17h 02m 50s	27° 15`.1
Procyon	17h 05m 11s	26° 12`.3
Regulus	17h 07m 49s	43° 20`.2

Find the most probable observed position at G.M.T. 17h 00m 00s January 1st; 1990; Time at which the *Assumed G.P.S. Position is (31° 20`.5 S; 172° 25`.3 E)*.

SOLUTION:

Step (1	l): Extract	GHA &	& Dec.	of stars;	

Star Arcturus	GMT	16h 51m 38s Jan.1 st
	341° 02`.6	1011 51111 508 Jan. 1
GHA γ Incr.	12° 56`.6	
SHA*		Dec.* N 19° 13`.8
GHA*	146° 11`.9 140° 11`.1	Dec.** _ N 19 13.8
GHA*	140° 11 .1	
Star Antares	GMT	16h 54m 10s Jan 1 st
GHA y	341° 02`.6	1011 J4111 108 Jan. 1
Incr.	13° 34`.7	
SHA*	13° 34'.7 112° 48`.2	Dec.* S 26° 24`.7
GHA*	112 48 .2 107° 25`.5	Dec.*S 2024.7
UNA*	107 25 .5	
Star Acrux	GMT	16h 57m 43s Jan.1 st
GHA y	341° 02`.6	1011 37111 438 Jan.1
GHA γ Incr.	14° 28`.1	
SHA*	14 28 .1 173° 29`.3	$D_{22} * S (2^{\circ} 02) 4$
GHA*	173° 29'.3 169° 00`.0	_ Dec.* S 63° 02`.4
GHA*	169° 00 .0	
Star Canopus	GMT	17h 00m 00s Jan.1 st
GHA y	356° 05`.1	
Incr.	00° 00`.0	
SHA*	264° 03`.4	Dec.* S 52° 41`.3
GHA*	260° 08`.5	—
Star Sirius	GMT	17h 02m 50s Jan.1 st
GHA y	356° 05`.1	1711 02111 508 Jan.1
Incr.	00° 42`.6	
SHA*	258° 48`.9	Dec.* S 16° 42`.1
GHA*	255° 36`.6	
UIIA	255 50.0	
Star Procyon	GMT	17h 05m 11s Jan.1 st
GHA γ	356° 05`.1	
Incr.	01° 18`.0	
SHA*	245° 17`.8	Dec.* N 5° 15`.1
CULAS	242° 40`.9	
GHA*		
UHA⁺		
GHA*	GMT	17h 07m 49s Jan.1 st
·	GMT 356° 05`.1	17h 07m 49s Jan.1 st
Star Regulus		17h 07m 49s Jan.1 st
Star <i>Regulus</i> GHA γ	356° 05`.1	17h 07m 49s Jan.1 st Dec.* N 12° 00`.9

Step (2): Arrange data in two tables as follows; Main Data

Star number	7
DR Latitude	31° 19`.0 S
DR Longitude	172° 25`.0 E
True Course	333°
Speed	16.5
Index Error	- 1`.3
Height of Eye	19.0
Required Time for MPOP	17h 00m 00s

Data of Stars

(1) Arcturus	
GMT	16h 51m 38s
Sextant altitude	22° 08`.5
GHA of star	140° 11`.1
Declination of star	19° 13`.8 N
(2) Antares	
GMT	16h 54m 10s
Sextant altitude	21° 24`.3
GHA of star	107° 25`.5
Declination of star	26° 24`.7 S
(3) Acrux	
GMT	16h 57m 43s
Sextant altitude	56° 19`.5
GHA of star	169° 00`.0
Declination of star	63° 02`.4 S
(4) Canopus	
GMT	17h 00m 00s
Sextant altitude	34° 49`.1
GHA of star	260° 08`.5
Declination of star	52° 41`.3 S
(5) Sirius	
GMT	17h 02m 50s
Sextant altitude	27° 15`.1
GHA of star	255° 36`.6
Declination of star	16° 42`.1 S
(6) Procyon	
GMT	17h 05m 11s
Sextant altitude	26° 12`.3
GHA of star	242° 40`.9
Declination of star	5° 15`.1 N
(7) Regulus	
GMT	17h 07m 49s
Sextant altitude	43° 20`.2
GHA of star	206° 04`.7
Declination of star	12° 00`.9 N

Step (3): Apply the software program;

C		_	
Seven		•	
True Course		Speed	
333		16.5	
Index error of the Sext		Hieght of eye	
-1.3		19	
D.R.Lat			
31	19	S	•
D.R.Long			
172	25	E	•
Required Time for fixing			
17	0	0	
Star 7	2 3 4	4 5 6 7	
17	7	49	
Sext.Alt			
43	20.2		
G.H.A			
206	4.7		
Dec	0.9	N	
12		N	-

MPOP (31° 20`.8 S; 172° 25`.4 E)

TRAINING APPLICATIONS

•

•

Application (1)

Z.T. 0455 Jun. 17th ; 1990 Ship was in DR position (20° 45`.0 N; 54° 35`.0 W).

- True Course to steer 300°
- Steaming Speed 19.5 k
 - I.E. 1`.2 on the arc
 - Ht. of eye

The following are **3-Star** sights; were observed at morning twilight as follows:

Star Name	G.M.T.	Sext. Alt.
Hamal	08h 44m 47s	44° 20`.9
Ankaa	08h 47m 15s	23° 15`.2
Eltanin	08h 53m 10s	25° 31`.5

Find the most probable observed position at G.M.T. 08h 50m 00s Jun.17th; 1990; the time at which the *ASSUMED G.P.S Position is* (20° 50°.0 N; 54° 30°.0 W).

16.0 m

Application (2)

Z.T. 1755; Aug.23rd ; 1990. Ship was in DR position (39° 31`.0 S; 155° 23`.0 E).

•	True Course to steer	133°
•	Steaming Speed	18.3 k

- Steaming Speed 18.3 k
 I.E. 1[°].7 off the arc
 - Ht. of eye 16.0 m

The following are **4-Star** sights; were observed at evening twilight as follows:

Star Name	G.M.T.	Sext. Alt.
Rasalhague	07h 30m 45s	33° 20`.4
Nunki	07h 33m 10s	51° 29`.9
Miaplacidus	07h 37m 32s	32° 34`.3
Spica	07h 42m 35s	43° 55`.4

Find the most probable observed position at G.M.T. 07h 40m 00s Aug. 23rd; 1990; the time at which the *ASSUMED G.P.S Position is (39° 30`.0 S; 155° 20`.0 E)*.

Application (3)

•

Z.T. 1945 February 17th; 1990 Ship was in DR position (40° 35`.0 S; 35° 45`.0 W).

- True Course to steer 200°
- Steaming Speed 19.0 k
 - I.E. 1`.6 off the arc
 - Ht. of eye 18.6 m

The following are **5-Star** sights; were observed at evening twilight as follows:

Star Name	G.M.T.	Sext. Alt.
Betelguese	21h 38m 38s	40° 57`.1
Adhara	21h 40m 47s	64° 55`.9
Acrux	21h 43m 15s	27° 59`.8
Achernar	21h 48m 10s	51° 45`.8
Menkar	21h 51m 20s	35° 34`.0

Find the most probable observed position at G.M.T.21h 45m 00s. Feb. 17th; 1990; Time at which the *ASSUMED G.P.S Position is* (40° 30`.0 S; 35° 40`.0W)

Application (4)

Z.T. 1837 April 2nd; 1990 Ship was in DR position (31° 00`.0 S; 100° 30`.0 E).

- True Course to steer 060°
 Steaming Speed 21.0 kts
- I.E. 1`.4 on the arc
 - Ht. of eye 14.0 m

The following are **6-Star** sights; were observed at evening twilight as follows:

Star Name	G.M.T.	Sext. Alt.
Pollux	11h 18m 50s	29° 18`.9
Regulus	11h 20m 55s	25° 14`.4
Acrux	11h 23m 10s	29° 47`.0
Canopus	11h 25m 57s	67° 50`.7
Acamar	11h 28m 12s	42° 24`.2
Menkar	11h 30m 40s	24° 31`.1

Find the most probable observed position at G.M.T. 11h 30m 00s. April 2^{nd} 1990; Time at which the *Assumed G.P.S Position is* (30° 55`.5 S; 100° 33`.3 E).

Application (5)

•

Z.T. 1850, October 15th; 1990 Ship was in DR position (33° 30`.0 S; 140° 28`.0 W).

- True Course to steer 065°
- Steaming Speed 17 k
- I.E. 2`.3 off the arc
 - Ht. of eye 14.3 m

The following are **7-Star** sights; were observed at morning twilight as follows:

Star Name	G.M.T.	Sext. Alt.
Markab	3h 51m 00s	24° 56`.1
Diphda	3h 54m 00s	26° 50`.5
Achernar	3h 57m 00s	31° 48`.2
Rigil Kent.	4h 00m 00s	32° 03`.5
Antares	4h 03m 00s	41° 10`.9
Rasalhague	4h 06m 00s	29° 46`.4
Altair	4h 09m 00s	47° 07`.2

Find the most probable observed position at G.M.T. 04h 00m 00s October 15^{th} ; 1990; Time at which the *Assumed G.P.S. Position is* $(33^{\circ} 28^{\circ}.0 \text{ S}; 140^{\circ} 30^{\circ}.0 \text{ W})$.

ANSWERS OF APPLICATIONS

APPLICATION (1)

UNIVERSAL MET	HOD				
Stars C	Count				
Three		•			
True Cours	æ		Speed		
300			19.5		
Index erro	or of the Sext		Hieght of eye		
-1.2			16		
D.R.Lat					
20	45			N	•
D.R.Long					
54	35			W	•
Required T	ime for fixing				
8	50	1		0	
Star	1 2	3			
	8	44	47		
	Sext.Alt				
	44	20.9			
	G.H.A 4	53.3			
	Dec	33.5			
	23	25.1	N	•	
МРОР	OF STAR SIGHTS =	20° 51.35 N ;	54º 27.28 W	I	Submit

ANSWER (20° 51`.4 N; 54° 27`.3 W)

APPLICATION (2)

UNIVERSAL M	ETHOD				
Star	's Count				
Four		-			
True C	ourse		Speed		
133			18.3		
Index	Index error of the Sext		Hieght of eye		
1.7			16		
D.R.L	at				
39		31		S	~
D.R.Lo	ong				
155		23		E	•
Requir	ed Time for fixing				
7		40		0	
S	1 2 tar 4	3 4			
	7	42	35		
	Sext.Alt				
	43	55.4			
	G.H.A				
	245 Dec	49			
	11	6.8	S	•	
МРС	OP OF STAR SIGHTS =	= 39º 30.06 S ;	155º 20.1 E		Submit

ANSWER (39° 30`.1 S; 155° 20`.1 E)

APPLICATION (3)

Five	•	1	
L		,	
True Course		Speed	
200		19	
Index error of the Sext		Hieght of eye	
1.6		18.6	
D.R.Lat			
40	35		S 🔹
D.R.Long			
35	45		w
Required Time for fixing			
21	45		0
1 2 Star 5	51	20	
21			
21 Sext.Alt			
	34		
Sext.Alt	34		
Sext.Alt 35	34		
Sext.Alt 35 G.H.A			

ANSWER (40° 30`.0 S; 35° 39`.8 W)

APPLICATION (4)

JNIVERSAL N					
SI	tars Count		1		
			J 		
Tru 60	e Course		Speed 21		
	lex error of the Sext		Hieght of eye		
-1.			14		
	R.Lat				
31		0		s 🗸	
DE	l.Long				I
10		30		E	
					I
11	quired Time for fixing	30		0	
	1 2 Star 6	3 4	40]
	Sext.Alt	30	UF		
	24	31.1			
	G.H.A				
	317	46.8			
	Dec				
	4	3.1	Ν	▼	
м	POP OF STAR SIGHTS	= 30° 56.21 S ;	100º 33.23 E		Submit

ANSWER (30° 56`.2 S; 100° 33`.2 E)

APPLICATION (5)

Seven		•	
True Course		Speed	
65		17	
Index error of the Sext		Hieght of eye	
2.3		14.3	
D.R.Lat			
33	30	S	•
D.R.Long			
140	28	W	
Star 7	2 3	4 5 6 7]
4	9	0	
Sext.Alt			
47	7.2		
G.H.A			
148 Dec	6.1		

ANSWER (33° 30`.1 S; 140° 28`.3 w)

12) Egyptian Method

To apply this software program you must:

• **Practically,** decide the required time (GMT) of fixing. You choose a time of round figure of minuets (15m) say. As an example assume that the GMT^s for 5-star sights are given as:

	- <u>-</u> 8 8- ·				
	Star(1)	Star(2)	Star(3)	Star(4)	Star(5)
GMT	3h 22m 41s	3h 24m 13s	3h 26m 56s	3h 29m 09s	3h 32m 17s

So the required time (GMT) of fixing [**3h 30m 00s**] is suitable.

• In the exercises, required time (GMT) of fixing is given.

In both cases;

- Calculate [$GHA \gamma$] at the required time of fixing.
- Extract <u>SHA</u> & <u>Dec</u>. for each star concerned.
- Record Azimuth (Az.) for each star concerned obtained from the process of preparation for star sights.

In both cases; arrange the data as given below to avoid mistakes of entry.

GHRy at RT	
Co.	True Course
Sp.	Speed
I.E.	Index Error
H.E.	Height of eye
DRL	DR Latitude
DRG	DR Longitude
RT	Required time

Star	1	2	3	4	5
GMT					
Sext. Alt.					
S.H.A.					
Dec.					
Az.					

The Input data are introduced in two steps;

Fill the main data then press star number to introduce parameters of each one.

The following is the screen of the Egyptian Method software program:

The software program is designed to obtain the most probable observed position MPOP; at the required time of fixing.

SOLVED APPLICATION

Z.T. 1945 February 17th; 1990 Ship was in DR position (40° 35`.0 S; 35° 45`.0 W).

- True Course to steer 200°
- Steaming Speed 19.0 kts
- I.E. 1`.6 off the arc
- Ht. of eye 18.6 m

The following are **7-Star** sights; were observed at evening twilight as follows:

Star Name	G.M.T.	Sext. Alt.	Az.
Procyon	21h 38m 38s	32° 34`.0	046°.7
Suhail	21h 40m 47s	46° 30`.3	114°.4
Acrux	21h 43m 15s	27° 59`.8	150°.9
Al Na`ir	21h 45m 55s	19° 13`.8	223°.8
Diphda	21h 48m 10s	28° 06`.6	269°.6
Menkar	21h 51m 20s	35° 34`.0	316°.3
Elnath	21h 54m 47s	20° 56`.7	000°.8

Find the most probable observed position at G.M.T. 21h 45m 00s Feb.17th; 1990; the time at which the *ASSUMED G.P.S Position is (40° 30`.0 S; 35° 40`.0 W)*.

SOLUTION:

Step (1): Calculate GHRy at G.M.T. 21h 45m 00s Feb.17th; 1990

GHA γ	102° 34`.5
Incr.	11° 16`.8
GHA γ	113° 51`.3

Step (2): Extract SHA & Dec. for each star concerned

Step (3): Arrange data as follows;

GHRy at RT	113° 51`.3
Co.	200°.0
Sp.	19.0
I.E.	1`.6
H.E.	18.6 m
DRL	40° 35`.0 S
DRG	35° 45`.0 W
RT	21h 45m 00s Feb. 17 th

star	Procyon	Suhail	Acrux	Al Na`ir	Diphda	Menkar	Elnath
GMT	21 38 38	21 40 47	21 43 15	21 45 55	21 48 10	21 51 20	21 54 47
Sext. Alt.	32 34.0	46 30.3	27 59.8	19 13.8	28 06.6	35 34.0	20 56.7
S.H.A.	245 17.7	223 05.0	173 28.8	28 05.9	349 13.6	314 33.4	278 34.6
Dec.	5 15.0 N	43 23.6 S	63 02.6 S	47 00.6 S	18 02.5 S	4 03.1 N	28 36.2 N
Az.	046.7	114.4	150.9	223.8	269.6	316.3	000.8

Stars Count	Twilight
Seven	✓ Evining
GHA at the required time	
113	51.3
True Course	Speed
200	19
Index error of the Sext	Hieght of eye
1.6	18.6
D.R.Lat	
40 35	S
D.R.Long	
35 45	W
Required Time for fixing	
21 45	0
1 2	4 5 6 7
Result	
P12 = 40° 30.2' S 35° 41.7' W	= 40° 26.4' = S = 35° 39.5' = VP37 = 0° 0' S 0° 0' W
P13 = 40° 29.1'S 35° 43'W	= 0° 0' S 0° 0' W P45 = 40° 27.9' S 35° 37.3' W
P14 = 0° 0' S 0° 0' W	= 0° 0' S 0° 0' W P46 = 40° 28.7' S 35° 36.3' W
P15 = 40° 33.5' S 35° 37.4' W	= 40° 30.3' S 35° 41.8' W P47 = 40° 30.6' S35° 33.6' W17
P16 = 40° 31.4' S 35° 40.1' W	= 40° 27.2' S 35° 38.4' W P56 = 40° 29.4' S 35° 37.3' W
P17 = 40° 30.3' S 35° 41.5' W	= 40° 26.7 S 35° 37.3 W P57 = 40° 30.5 S 35° 37.4 W
P23 = 40° 28' S 35° 40.4' W	= 0° 0' S 0° 0' W P67 = 40° 30.4' S 35° 38.8' W

Note:

The above figure is the final seen of application; where some couples of stars failed to solve. This is due to the condition of the difference of azimuths in theory; $[\Delta Az. \le 30^\circ]$ or $[150^\circ \le \Delta Az. \le 210^\circ]$. As an example P₁₄ is not solved because Az. of star₁ (*Procyon*) = 046°.7 and star₄ *Al Na*`*ir*= 223°.8 so the difference =177°.1.

TRAINING APPLICATIONS

Application (1)

Z.T. 0455 Jun. 17th ; 1990 Ship was in DR position (20° 45`.0 N; 54° 35`.0 W).

- True Course to steer 300°
 - Steaming Speed 19.5 k
 - I.E. $1^{2}.2$ on the arc
 - Ht. of eye

The following are **3-Star** sights; were observed at morning twilight as follows:

Star Name	G.M.T.	Sext. Alt.	Az.
Hamal	08h 44m 47s	44° 20`.9	077°.1
Ankaa	08h 47m 15s	23° 15`.2	161°.1
Eltanin	08h 53m 10s	25° 31`.5	318.3

Find the most probable observed position at G.M.T. 08h 50m 00s Jun.17th; 1990; the time at which the ASSUMED G.P.S Position is (20° 50`.0 N; 54° 30`.0 W).

16.0 m

Application (2)

Z.T. 1755; Aug.23rd; 1990. Ship was in DR position (39° 31`.0 S; 155° 23`.0 E).

- 133° True Course to steer ٠
- Steaming Speed 18.3 k I.E. •
 - 1`.7 off the arc 16.0 m
 - Ht. of eye

The following are **4-Star** sights; were observed at evening twilight as follows:

Star Name	G.M.T.	Sext. Alt.	Az.
Rasalhague	07h 30m 45s	33° 20`.4	028°.7
Nunki	07h 33m 10s	51° 29`.9	083°.6
Miaplacidus	07h 37m 32s	32° 34`.3	203°.7
Spica	07h 42m 35s	43° 55`.4	296°.4

Find the most probable observed position at G.M.T. 07h 40m 00s Aug. 23rd; 1990; the time at which the ASSUMED G.P.S Position is (39° 30`.0 S; 155° 20`.0 E).

Application (3)

Z.T. 1945 February 17th; 1990 Ship was in DR position (40° 35`.0 S; 35° 45`.0 W).

		1
•	True Course to steer	200°
•	Steaming Speed	19.0 k
•	I.E.	1`.6 off the arc
•	Ht. of eye	18.6 m

The following are **5-Star** sights; were observed at evening twilight as follows:

Star Name	G.M.T.	Sext. Alt.	Az.
Betelguese	21h 38m 38s	40° 57`.1	015°.9
Adhara	21h 40m 47s	64° 55`.9	071°.4
Acrux	21h 43m 15s	27° 59`.8	150°.9
Achernar	21h 48m 10s	51° 45`.8	225°.3
Menkar	21h 51m 20s	35° 34`.0	316°.3

Find the most probable observed position at G.M.T.21h 45m 00s. Feb. 17th; 1990; Time at which the ASSUMED G.P.S Position is (40° 30`.0 S; 35° 40`.0W)

Application (4)

Z.T. 0407 January 2nd; 1990 Ship was in DR position (31° 19`.0 S; 172° 25`.0 E).

- True Course to steer 333°
 - Steaming Speed 16.5 k
- I.E. 1`.3 on the arc
 - Ht. of eye 19.0 m

The following are **6-Star** sights; were observed at morning twilight as follows:

Star Name	G.M.T.	Sext. Alt.	Az.
Arcturus	16h 51m 38s	22° 08.5	048°.5
Antares	16h 54n 10s	21° 24.3	108°.8
Acrux	16h 57m 43s	56° 19.5	165°.0
Sirius	17h 02m 50s	27° 15.1	266°.2
Procyon	17h 05m 11s	26° 12.3	294°.6
Regulus	17h 07m 49s	43° 20.2	334°.8

Find the most probable observed position at G.M.T. 17h 00m 00s January 1st; 1990; Time at which the *Assumed G.P.S. Position is (31° 20`.5 S; 172° 25`.3 E)*.

Application (5)

Z.T. 1850, October 15th; 1990 Ship was in DR position (33° 30`.0 S; 140° 28`.0 W).

- True Course to steer 065°
- Steaming Speed
- I.E. 2`.3 off the arc
 - Ht. of eye
- 14.3 m

17 k

The following are **7-Star** sights; were observed at morning twilight as follows:

Star Name	G.M.T.	Sext. Alt.	Az.
Markab	3h 51m 00s	24° 56`.1	049°.3
Diphda	3h 54m 00s	26° 50`.5	094°.7
Achernar	3h 57m 00s	31° 48`.2	141°.0
Rigil Kent.	4h 00m 00s	32° 03`.5	214°.8
Antares	4h 03m 00s	41° 10`.9	262°.5
Rasalhague	4h 06m 00s	29° 46`.4	312°.7
Altair	4h 09m 00s	47° 07`.2	348°.8

Find the most probable observed position at G.M.T. 04h 00m 00s October 15th; 1990; Time at which the *Assumed G.P.S. Position is (33° 28`.0 S; 140° 30`.0 W).*

ANSWERS OF APPLICATIONS

APPLICATION (1)

Egyption Method

Three	- Manaira	•	1
GHA at the required time	▼ Morning	•	ļ
37	51.2		
True Course	Speed		
300	19.5		
Index error of the Sext	Hieght of eye		
-1.2	16		
D.R.Lat			
20 45	N	•]
D.R.Long			
54 35	W	-]
Required Time for fixing			, ,
50	0		
1 2 3			
Result			1
P12 = 20° 51.6' N54° 31.9' W			
P13 = 20° 46.4' N54° 30.6' W			
P23 = 0° 0' N 0° 0' W			

MPOP is (20° 49`.0 N; 54° 31`.2 W)

APPLICATION (2)

Stars Count		Twilight	
Four		Evining	
GHA at the required time			
86		20.6	
True Course		Speed	
133		18.3	
Index error of the Sext		Hieght of eye	
1.7		16	
D.R.Lat			
39	31		S
D.R.Long			
155	23		E
Required Time for fixing			
7	40		0
Result P12 = 39° 29' S 155° 18.7' P13 = 0° 0' S 0° 0' E P14 = 39° 30.1' S 155° 21.3	5'E	2' S 155° 19.4' E 1' S 155° 22.2' E	
P23 = 39° 27.8' S 155° 18.	5' E		

MPOP is (39° 29`.8 S; 155° 20`.1 E)

APPLICATION (3)

Stars Count	Twilight
Five	▼ Evining
GHA at the required time	
113	51.3
True Course	Speed
200	19
Index error of the Sext	Hieght of eye
1.6	18.6
D.R.Lat	
40 35	S
D.R.Long	
35 45	W
Required Time for fixing	
21 45	0
1 2 Result	4 5
P12 = 40° 29.8' S 35° 40.7' W	
	= 40° 31.3' S 35° 40' W P45 = 40° 30.1' S 35° 38.3' V
P14 = 0° 0' S 0° 0' W	
P15 = 40° 30.2' S 35° 38.5' W	
	= 40° 28.2' S 35° 40.7' W
	= 0° 0' S 0° 0' W
P23 = 40° 28.4' S 35° 41.4' W	

MPCP = 40º 29.6' S 35º 40.4' W

Submit

MPOP is (40° 29`.6 S; 35° 40`.4 W)

APPLICATION (4)

Stars Count		Twilight	
Six	•	Morning	
GHA at the required time		F 4	
356		5.1	
True Course		Speed	
333		16.5	
Index error of the Sext		Hieght of eye	
-1.3		19	
D.R.Lat			
31 19			S
D.R.Long			
172 25			E
Required Time for fixing			
17 0			0
Result	3 4	5 6	
P12 = 31° 20' S 172° 22.1' E	P24 = 0° 0' = S	= 0° 0' E	
P13 = 31° 20.4' S 172° 22.6' E	P25 = 0° 0' S 0°	0'E	P45 = 31° 20.9' S 172° 27.7 E
P14 = 31° 25.4' S 172° 28' E	P26 = 31° 20.9'	S 172º 21.8'E	P4631º 18.8' S 172º 27.5' E
P15 = 31° 23.6' S 172° 26.1' E			
P16 = 31° 20.5' S 172° 22.7' E	P34 = 31° 19.3'	S 172º 27.6'E	P56 = 31° 18.2' S 172° 29.1' E
	P35 = 31° 19.1	S 172º 28.7 E	
	P36 = 0° 0' S 0	0'E	

MPOP is (31° 20`.6 S; 172° 25`.5 E)

APPLICATION (5)

Stars Count		Twilight	
Seven		 Evining 	•
GHA at the required time	2		
83		25.9	
True Course		Speed	
65		17	
Index error of the Sext		Hieght of eye	
2.3		14.3	
D.R.Lat			
33	30		S 🔹
D.R.Long			
140	28		w 🗸
Required Time for fixing			
4	0		0
Result	2 3	4 5 6	5 7
			3' = P37 = 0° 0' S 0° 0' W
P13 = 33° 29.5' 5	140° 30.3'W P25 =	0° 0' S 0° 0' W	P45 = 33° 28.9' S 140° 26.7' W
P14 = 0° 0' S 0°	P20 =	33° 34.3' S 140° 30.9' W	P46 = 33° 29.6 5 140° 25.5 W
P15 = 33° 33.2' 5	140° 26.1'W P27 =	33º 27.9' S 140º 30.4' W	P47 = 33° 27.7' S140° 28.8' W1
		33° 28.1' S 140° 28.2' W	P56 = 33° 30.5' S 140° 26.5' W
		33° 27.2' S 140° 27' W	P57 = 33° 27.5' S 140° 27' W
P23 = 33º 29.7' 9	5 140° 30.6' W P36 =	0° 0' S 0° 0' W	P67 = 33° 27' S 140° 22.4' W

MPOP is (33° 29`.2 S; 140° 28`.3W)

GROUP(4)

PROBLEMS RELATED TO CELESTIAL NAVIGATION

- Identification of Unknown Bright Star
- Coordinates of Sun, Aries and Equation of Time

D. GROUP (4)

13) Unknown Star Identification

To apply this software program_you must:

- Calculate [<u>GHA</u>_v] at GMT [time of taking *Bearing* and *Altitude*]
- Extract DR position at GMT.

The software program is designed to give the <u>name of the unknown star</u>.

The screen of the software program is given below

Unknown Star Identification	
	DR Latitude

Solved Application

Z.T. 0055 Aug. 13th, 1990; DR (44° 02`.6 S; 29° 50`.1 E)

Sky was cloudy, and a bright star was seen in a clearance of clouds. Altitude and Bearing was taken as follows;

 $Altitude \approx \!\! 19^{\circ}.0$ True Bearing $\approx \!\! 146^{\circ}.5$ Identify the name of that star.

Solution

Step (1); Extract GHA y

Z.T.	0055 Aug. 13th
Z.N	-2
G D	2255 Aug. 12 th
GHA γ	291° 05`.4
Incr.	13° 47`.3
GHA γ	304° 52`.7

Step (2); Apply Software as follows;

UNKNOWN STAR IDENT	IFICATION	
DR Latitude	2.6	
DR Longitude	2.0	s 🔻
29	50.1	E
Altitude		
True Bearing		
146.5		
GHA		
304	52.7	
Hemi-sphere of sta	r	
E SHA = 265	0	
Dec = 52° S	Canopus	Submit

Answer: The unknown star is Canopus

TRAINING APPLICATIONS

```
Application (1)
```

GMT 08h 06m 00s Jan. 2nd 1990; DR (31° 00`.0 S; 172° 29`.7 E)

Sky was cloudy, and a bright star was seen in a clearance of clouds. Altitude and Bearing was taken as follows;

Altitude ≈31°.0 True Bearing ≈107°

Identify the name of that star.

Application (2)

GMT 08h 06m 00s Jan. 2nd 1990; DR (31° 00`.0 S; 172° 29`.7 E) Sky was cloudy, and a bright star was seen in a clearance of clouds. Altitude and Bearing was taken as follows;

Altitude $\approx 63^{\circ}.0$ True Bearing $\approx 194^{\circ}$

Identify the name of that star.

Application (3)

GMT 17h 06m 00s Jan. 1st 1990; DR (31° 19`.0 S; 172° 28`.3 E) Sky was cloudy, and a bright star was seen in a clearance of clouds. Altitude and Bearing was taken as follows; Altitude $\approx 44^{\circ}.0$

True Bearing $\approx 337^{\circ}$ Identify the name of that star.

Application (4)

GMT 17h 48m 00s June 27th 1990; DR (38° 10`.0 N; 154° 38`.0 E) Sky was cloudy, and a bright star was seen in a clearance of clouds. Altitude and Bearing was taken as follows;

 $Altitude \approx 45^{\circ}.0$ True Bearing $\approx 290^{\circ}$ Identify the name of that star.

Application (5)

GMT 06h 51m 00s December 7th 1990; DR (38° 00`.4 N; 154° 24`.9 E) Sky was cloudy, and a bright star was seen in a clearance of clouds. Altitude and Bearing was taken as follows;

 $Altitude \approx 17^{\circ}.0$ True Bearing $\approx 044^{\circ}$ Identify the name of that star.

ANSWERS;

Application (1)

DR Latitude			
31	0	S 🔻	
DR Longitude	29.7	E	
Altitude			
True Bearing			
GHA 223	12.2		
223	12.2		
Hemi-sphere of sta	ır		
E ▼ SHA = 255	0		
Dec = 28° S	Adhara	Sub	

The unknown star is Adhara

Application (2)	
	UNKNOWN STAR IDENTIFICATION
	DR Latitude
	DR Longitude
	172 29.7 E V
	Altitude 63
	True Bearing
	GHA
	223 12.2
	Hemi-sphere of star
	SHA = 335°
	Dec = 56° S Achernar Submit

The unknown star is Achernar

Application (3)

UNKNOWN STAR IDENTI	FICATION	
DR Latitude		
31	19	S 💌
DR Longitude		
172	28.3	E
Altitude		
True Bearing		
GHA		
356	35.2	
Hemi-sphere of star	r	
₩ ▼ SHA = 208°		
Dec = 11° N F	Regulus	Submit

The unknown star is Regulus

Application (4)			
	UNKNOWN STAR IDENTIFIC	ATION	
	DR Latitude		
	38	10	N -
	DR Longitude		
	154	38	E
	Altitude		
	45		
	True Bearing		
	290		
	GHA		
		34.7	
	Hemi-sphere of star		
	w -		
	SHA = 81°		
	Dec = 38° N Vega		Submit

The unknown star is Vega

Application (5)		
	UNKNOWN STAR IDENTIFICATION	
	DR Latitude	
	38 00.4	N 🔻
	DR Longitude	
	154 24.9	E
	Altitude	
	17	
	True Bearing	
	GHA 178 32.2	
	Hemi-sphere of star	
	SHA = 281°	
	Dec = 46° N Capella	Submit

The unknown star is Capella

14) Equation of Time and the Coordinates of Sun and Aries:

To apply this software programs you can proceed without any previous calculations. The software program is designed to obtain the following parameters at a given set of time:

- Dec. of true sun.
- G.H.A. of true sun, (error < 1`.0).
- S.H.A. of true sun.
- R.A. of true sun.
- G.H.A. of Aries, (error < 1`.0).
- Equation of time.

Where the Set of time is consists of; (Year; Month; Day; Hours; Minutes; Seconds)

The screen of the software program is given below

Coordinates of the True Sun and Equation of Time	
Date Y M GMT h m	D

Solved Application

Extract GHA, Dec for the Sun, Equation of time and GHA γ at GMT 12h 00m 00s July 15th 1990.

Manual Solution

A. F	or Sun		
GHA	358° 31`.3	Dec	21° 31`.4 N
Incr.	00	d ^{corr}	00
GHA	358° 31`.3	C. Dec	21° 31`.4 N

B. Equation of time [- 5m 55s]

C.		
GHA	113° 04`.9	
Incr.	00	
GHA	113° 04`.9	

Software Application

SUN COORDINATE	S EQ OF TIME Result	
Declination	21º 31.4 N	
G.H.A	358° 31	
R.A	114.55479 = 7H 38M 13S	
S.H.A	245° 26.7	
R.G.H.A (Aries)	113º 4.3	
Eq. Of Time	- OH 5M 55S	
		Back

ANSWERS;

Dec. sun	21° 31`.4 N
GHA sun	358° 31`.0
Eq. of time	- 5m 55s
GHA γ	113° 04`.3

Training Applications

Application (1) Find GHA, Dec for the Sun, Equation of time and GHA γ at GMT 18h 00m 00s August 20th 1990.

Application (2) Find GHA, Dec for the Sun, Equation of time and GHA γ at GMT 00h 30m 00s January 2nd 1990.

Application (3) Find GHA, Dec for the Sun, Equation of time and GHA γ at GMT 06h 00m 00s June 18th 1990.

Application (4) Find GHA, Dec for the Sun, Equation of time and GHA γ at GMT 18h 00m 00s December 1st 1990.

ANSWERS

Application (1)

SUN COORDINATES EQ OF TIME Result

Declination	12º 21.5 N	
G.H.A	89° 9 . 3	
R.A	149.64513 = 9H 58M 34S	
S.H.A	210° 21.3	
R.G.H.A (Aries)	238º 48	
Eq. Of Time	- 0H 3M 22S	

Back

ANSWERS;

Dec. sun	12° 21`.5 N
GHA sun	89° 09`.3
Eq. of time	- 3m 22s
GHA γ	238° 48`.0

Application (2)

SUN COORDINATES EQ OF TIME Result								
Declination	22º 57.4 S							
G.H.A	186° 33.6							
R.A	282.3336 = 18H 49M 20	S						
S.H.A	77° 40							
R.G.H.A (Aries)	108º 53.6							
Eq. Of Time	- 0H 3M 45S							
		Back						

ANSWERS;

Dec. sun	22° 57`.4 S
GHA sun	186° 33`.6
Eq. of time	- 3m 45s
GHA γ	108° 53`.6

Application (3)

SUN COORDINATES EQ OF TIME Result

Declination	23º 24 N	
G.H.A	269° 45.1	
R.A	86.46231 = 5H 45M 50S	
S.H.A	273º 32.3	
R.G.H.A (Aries)	356° 12.8	
Eq. Of Time	- 0H 0M -60S	
		Back

ANSWERS;

Dec. sun	23° 24`.0 N
GHA sun	269° 45`.1
Eq. of time	- 0m 60s
GHA γ	356° 12`.8

Application (4)

SUN COORDINATES	S EQ OF TIME Result	
Declination	21º 50.6 S	
G.H.A	92º 43.1	
R.A	247.59807 = 16H 30M 23S	
S.H.A	112º 24.1	
R.G.H.A (Aries)	340° 19	
Eq. Of Time	+ 0H 10M 52S	
		Back

ANSWERS;

Dec. sun	21° 50`.6 S
GHA sun	92° 43`.1
Eq. of time	+ 10m 52s
GHA γ	340° 19`.0

1990 JANUARY 1, 2, 3 (MON., TUES., WED.)

UT	ARIES	VENUS -4.		JUPITER -2.7	SATURN +0.5	STARS
(GMT) dh	G.H.A.	G.H.A. Dec.	G.H.A. Dec.	G.H.A. Dec.	G.H.A. Dec.	Name S.H.A. Dec.
1 00 01 02 03 04	100 23.2 115 25.7 130 28.1 145 30.6 160 33.0	152 11.4 S16 59.0 167 14.3 58.4 182 17.2 57.9 197 20.1 57.4 212 23.0 56.9	227 24.9 55.9 242 25.5 56.2 257 26.1 • 56.5 272 26.7 56.8	4 42.6 N23 13.3 19 45.4 13.3 34 48.2 13.3 49 51.0 · 13.3 64 53.9 13.4	''' '''' 173 29.9 S22 14.3 188 32.1 14.3 203 34.2 14.2 218 36.4 14.2 233 38.5 14.2	Acamar 315 31.3 S40 20. Achornar 335 39.4 S57 17. Acrux 173 29.3 S63 02.4 Adhara 255 26.0 S28 57.4 Aldebaran 291 09.3 N16 29.3
05 06 07 08 M 09 0 10	190 38.0 205 40.4 220 42.9 235 45.4 250 47.8	227 26.0 56.4 242 28.9 S16 55.8 257 31.8 55.3 272 34.7 54.8 287 37.7 • 54.3 302 40.6 53.8	302 27.9 S21 57.4 317 28.5 57.7 332 29.0 57.9 347 29.6 • 58.2 2 30.2 58.5	79 56.7 13.4 94 59.5 N23 13.4 110 02.4 13.4 125 05.2 13.4 140 08.0 • 13.5 155 10.8 13.5	248 40.7 14.2 263 42.8 S22 14.1 278 45.0 14.1 293 47.1 14.1 308 49.3 • 14.0 323 51.4 14.0	Alioth 166 35.8 N56 00. Alkaid 153 12.7 N49 21. Al Na'ir 28 05.9 S47 00. Alnilam 276 03.9 S 1 12. Alphard 218 13.1 S 8 36.
N 11 D 12 A 13 Y 14 15 16	265 50.3 280 52.8 295 55.2 310 57.7 326 00.2 341 02.6	317 43.6 53.3 332 46.5 S16 52.7 347 49.5 52.2 2 2 52.4 51.7 17 55.4 • 51.2 32 58.4 • 50.7	32 31.4 S21 59.1 47 32.0 59.4 62 32.6 59.7 77 33.2 21 59.9 92 33.8 22 00.2	170 13.7 13.5 185 16.5 N23 13.5 200 19.3 13.5 215 22.2 13.5 230 25.0 13.6 245 27.8 13.6	338 53.6 14.0 353 55.7 S22 13.9 8 57.8 13.9 24 00.0 13.9 39 02.1 13.8 54 04.3 13.8	Alphecca 126 26.1 N26 44. Alpheratz 358 01.9 N29 02. Altair 62 25.7 N 8 50. Ankaa 353 32.9 S42 21. Antares 112 48.2 S26 24.
17 18 19 20 21 22	356 05.1 11 07.5 26 10.0 41 12.5 56 14.9 71 17.4	48 01.3 50.2 63 04.3 S16 49.7 78 07.3 49.1 93 10.3 48.6 108 13.3 • 48.1 123 16.3 47.6	107 34.4 00.5 122 35.0 S22 00.8 137 35.6 01.1 152 36.1 01.4 167 36.7 • 01.6 182 37.3 01.9	260 30.7 13.6 275 33.5 N23 13.6 290 36.3 13.6 305 39.1 13.7 320 42.0 • 13.7 335 44.8 13.7	69 06.4 13.8 84 08.6 S22 13.7 99 10.7 13.7 114 12.9 13.7 129 15.0 13.7 13.7 144 12.9 13.7 13.7 13.6	Arcturus 146 11.9 N19 13. Atria 108 06.5 S69 00. Avior 234 24.8 S59 28. Bellatrix 278 50.6 N 6 20. Betelgeuse 271 20.0 N 7 24.
-01 02 03 04	86 19.9 101 22.3 116 24.8 131 27.3 146 29.7 161 32.2 176 24 7	138 19.3 47.1 153 22.3 S16 46.6 168 25.3 46.1 183 28.3 45.6 198 31.3 • 45.1 213 34.3 44.6 229 37 44.1 44	197 37.9 02.2 212 38.5 522 02.5 227 39.1 02.8 242 39.7 03.0 257 40.3 · 03.3 272 40.9 03.6	350 47.6 13.7 5 50.5 N23 13.7 20 53.3 13.8 35 56.1 13.8 50 58.9 13.8 66 01.8 13.8 60 14.8 13.8	159 19.3 13.6 174 21.5 S22 13.6 189 23.6 13.5 13.5 204 25.7 13.5 13.5 219 27.9 • 13.5 234 30.0 13.4 420 20.0 13.4	Canapus 264 03.4 S52 41. Capella 281 00.1 N45 59. Deneb 49 44.0 N45 14. Denebola 182 51.4 N14 37. Diphda 349 13.5 S18 02.
06 07 T 08 U 09 E 10	176 34.7 191 37.1 206 39.6 221 42.0 236 44.5 251 47.0 266 49.4	228 37.3 44.1 243 40.4 516 43.6 258 43.4 43.1 273 46.5 42.6 288 49.5 • 42.1 303 52.5 41.5 318 55.6 41.0 41.5 41.0 41.5 41.0	287 41.4 03.9 302 42.0 S22 04.2 317 42.6 04.4- 322 43.2 04.7 347 43.8 • 05.0 2 44.4 05.3 17 45.0 05.6	81 04.6 13.8 96 07.4 N23 13.9 -111 10.2 13.9 126 13.1 13.9 141 15.9 13.9 156 18.7 13.9 171 21.6 13.9	249 32.2 13.4 264 34.3 S22 13.4 279 36.5 13.3 309 40.8 13.3 309 40.8 • 13.3 324 42.9 13.2 329 45 1 13.2 13.2 13.2 13.2	Dubhe 194 12.5 N61 48. Elnath 278 34.5 N28 36. Eltanin 90 54.9 N51 29. Enif 34 04.7 N 9 49. Fomalhaut 15 43.4 S29 40.
D 12 A 13 Y 14 15 16	281 51.9 296 54.4 311 56.8 326 59.3 342 01.8 357 04.2	333 58.7 \$16 40.5 349 01.7 40.0 4 4 04.8 39.5 19 07.9 39.1 34 10.9 38.6 49 14.0 38.1	17 45.6 53.8 32 45.6 522 05.8 47 46.1 06.1 62 46.7 06.4 77 47.3 • 06.7 92 47.9 06.9 107 48.5 07.2	186 24.4 N23 14.0 201 27.2 14.0 216 30.0 14.0 231 32.9 14.0 246 35.7 14.0	339 45.1 13.2 354 47.2 S22 13.2 9 49.4 13.1 24 51.5 13.1 39 53.6 • 13.1 54 55.8 13.1	Gacrux 172 20.8 557 03. Gienah 176 10.4 \$17 29. Hadar 149 13.5 \$60 19. Hamal 328 20.6 N23 25. Kaus Aust. 84 07.5 \$34 23.
18 19 20 21 22 23	12 06.7 27 09.1 42 11.6 57 14.1 72 16.5 87 19.0	64 17.1 S16 37.6 79 20.2 37.1 94 23.3 36.6 109 26.4 • 36.1 124 29.5 35.6 139 32.6 35.1	122 49.1 S22 07.5 137 49.7 07.8 152 50.3 08.0 167 50.8 08.3 182 51.4 08.6		69 57.9 13.0 85 00.1 S22 13.0 100 02.2 13.0 115 04.4 12.9 130 06.5 · · · 12.9 145 08.7 12.9 160 10.0 12.8 12.8 12.8	Kochab 137 19.5 N74 11. Markab 13 56.1 N15 09. Menkar 314 33.3 N 4 03. Menkar 148 28.6 S36 19. Miaplacidus 221 42.9 S69 40.
3 00 01 02 03 04	102 21.5 117 23.9 132 26.4	154 35.7 S16 34.6	212 52.6 522 09.1 227 53.2 09.4 242 53.8 09.7 257 54.4 · · 10.0 272 54.9 10.2 287 55.5 10.5 10.5 10.5	6 58.3 N23 14.2 22 01.1 14.2 37 04.0 14.2 52 06.8 · 14.2 67 09.6 14.3	17513.0\$2212.819015.112.820517.312.722019.412.723521.612.7	Mirfak 309 05.4 N49 49. Nunki 76 20.5 S26 18. Peacock 53 47.3 S56 46. Pollux 243 48.8 N28 03. Procyon 245 17.8 N 5 15.
06 W 07 E 08 D 09 N 10	192 36.3 207 38.7 222 41.2 237 43.6 252 46.1 267 48.6	224 51.5 52.1 244 54.5 \$16 31.7 259 57.6 31.2 275 00.7 30.7 290 03.9 • 30.2 305 07.0 29.7 320 10.2 29.2	302 56.1 S22 10.8 317 56.7 11.0 332 57.3 11.3 347 57.9 · · 11.6 2 58.4 11.9	97 15.3 N23 14.3 112 18.1 14.3 127 20.9 14.3 142 23.8 · 14.4 157 26.6 14.4	280 28.0 12.6 295 30.1 12.5 310 32.3 • 12.5	Rasalhague 96 23.1 N12 33. Regulus 208 02.0 N12 00. Rigel 281 28.7 S 8 12. Rigel 281 28.7 S 8 12. Rigil Kent. 140 16.3 560 47. Sabik 102 33.1 S15 42.
S 12 D 13 A 14 Y 15 16	282 51.0 297 53.5 312 56.0 327 58.4 343 00.9 358 03.4	335 13.4 \$16 28.7 350 16.5 28.3 5 19.7 27.8 20 22.9 • 27.3 35 26.1 26.8 50 29.3 26.3	32 59.6 S22 12.4 48 00.2 12.7 63 00.8 12.9 78 01.4 · · 13.2 93 01.9 13.5	1	355 38.7 S22 12.4 10 40.9 12.4 25 43.0 12.4 40 45.2 12.3	Schedar 350 00.9 N56 29. Shaula 96 46.2 S37 05. Sirius 258 48.9 S16 42. Spica 158 49.9 S11 06. Suhail 223 05.1 S43 23.
18 19 20 21 22	13 05.8 28 08.3 43 10.8 58 13.2 73 15.7	65 32.4 S16 25.9 80 35.6 25.4 95 38.8 24.9 110 42.0 • 24.4 125 45.3 23.9	123 03.1 S22 14.0 138 03.7 14.3 153 04.3 14.5 168 04.8 • 14.8 183 05.4 15.1	277 49.2 N23 14.5 292 52.0 14.5 307 54.8 14.6 322 57.7 • 14.6 338 00.5 14.6	85 51.6 S22 12.2 100 53.7 12.2 115 55.9 12.2 130 58.0 · · 12.1 146 00.2 12.1	Vega 80 51.3 N38 46. Zuben'ubi 137 25.2 S16 00. S.H.A. Mer. Pass Venus 51 59.9 13 44
23	88 18.1 h m .17 11.7	140_48.5 23.5 v 3.1 d 0.5	198 06.0 15.3 v 0.6 d 0.3	<u>353_03.3</u> 14.6 v 2.8 d 0.0		Mars 111 16.2 9 49 Jupiter 264 28.1 23 32 Saturn 72 59.1 12 21

xC JANUARY 1, 2, 3 (MON., TUES., WED.) 11

			-		T Twi	light	3., w	<u> </u>	Ma	onrise	11
UT (GMT)	SUN	M	00N	Lat.	Naut.	Civil	Sunrise	1	2	3	4
1 00 01 02 03 04 05 06 07 08 M 09	G.H.A. Dec. 0 0 0 179 10.5 S23 02.5 194 10.2 02.3 209 09.9 02.1 224 09.6 . 01.7 254 09.0 01.5 269 08.7 S23 01.3 284 08.4 01.1 299 08.1 00.9 314 07.8 . 00.7 329 07.5 00.5 344 07.2 00.3 359 06.9 S23 00.1 14 06.7 22 59.9 29 06.4 59.7 59 40 05.5 59.1 89 05.2 522 89 05.2 S22 58.6 119 04.3 58.2 149 04.0 58.0 164 03.7 57.8 179 03.4 S22 57.8 179	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Dec. d H.P. 0 / / / S11 50.4 14.2 57.6 11 36.2 14.3 57.6 11 07.6 14.3 57.7 10 53.3 14.5 57.7 10 38.8 14.5 57.7 10 9.8 14.6 57.7 10 9.8 14.5 57.7 9 40.5 14.7 57.8 9 11.0 14.8 57.8 9 11.0 14.8 57.8 9 11.0 14.8 57.8 8 56.2 14.9 57.8 8 56.2 14.9 57.8 8 56.4 15.0 57.9 7 56.4 15.0 57.9 7 56.4 15.0 57.9 7 14.1 15.2 58.0 6 55.9 15.2 58.0	$ \begin{smallmatrix} \circ & N & 72 \\ N & 70 \\ 666 \\ 64 \\ 620 \\ 620 \\ N \\ 566 \\ 544 \\ 520 \\ 45 \\ 500 \\ 45 \\ 500 \\ N \\ 300 \\ 300 \\ 300 \\ 350 \\ 455 \\ 500 \\ 5524 \\ 56 \\ 5524 \\ 56 \\ 5524 \\ 56 \\ 5524 \\ 56 \\ 5524 \\ 56 \\ 5524 \\ 56 \\ 56 \\ 5524 \\ 56$	<pre>h m 08 23 08 05 07 49 07 37 07 26 07 17 07 02 06 56 06 50 06 44 06 39 06 28 06 18 06 09 06 28 06 18 06 09 06 28 06 18 06 09 06 28 06 18 05 28 05 12 04 31 04 02 03 44 03 22 02 52 02 08 01 03 22 01 03 21</pre>	h m 10 40 09 48 09 16 08 53 08 34 08 05 07 54 07 44 07 28 07 20 07 05 06 52 06 40 07 05 06 52 06 40 07 05 06 52 06 40 06 12 05 55 05 38 05 20 06 40 06 12 05 55 05 38 05 20 04 36 04 21 04 36 03 41 03 12 02 58 02 10 02 19	h m 10 26 09 49 09 22 09 92 09 22 08 45 08 31 08 19 08 88 07 38 07 22 07 08 06 56 06 17 06 04 03 56 03 46 03 20	h m 11 34 11 20 11 00 10 52 10 45 10 39 10 30 10 25 10 22 10 34 10 30 10 25 10 22 10 18 10 11 10 04 09 59 09 38 09 31 09 54 09 38 09 31 09 246 09 08 51 08 51 08 43 08 39 06 35 08 30	h m 10 58 10 54 10 50 10 47 10 45 10 43 10 41 10 37 10 36 10 37 10 36 10 37 10 36 10 37 10 36 10 37 10 29 10 27 10 27 10 27 10 22 10 20 10 17 10 15 10 13 10 10 10 08 10 04 10 00 99 57	h m 10 25 10 29 10 32 10 35 10 38 10 40 10 42 10 45 10 45 10 45 10 45 10 45 10 55 10 55 10 55 10 55 10 55 10 55 10 56 10 59 11 02 11 04 11 04 11 06 11 02 11 14 11 16 11 18 11 22 11 24 11 24 11 24	b m 09 49 10 03 10 13 10 23 10 30 10 37 10 43 10 53 10 57 11 04 11 12 11 18 11 29 11 52 11 52 11 52 12 207 12 21 12 21 12 24 12 25 12 54 12 55
04 05 06	239 02.2 56.7 254 01.9 56.5 269 01.7 S22 56.3	178 43.2 13.0 193 15.2 13.0	4 52.9 15.5 58.1 4 37.4 15.5 58.1 5 4 21.9 15.6 58.2 4 06.3 15.6 58.2	58 S 60	 	01 51 01 08 Twil	03 04 02 44	08 25 08 19	09 56 09 54	11 25 11 27 11 29	12 55 13 01 13 07
T 08 U 09	299 01.1 55.8 314 00.8 55.6	236 51.2 13.0 251 23.2 13.0	3 50.7 15.7 58.2 3 35.0 15.6 58.2	Lat.	Sunset	Civil	Naut.	1	2	3	4
E 10 S 11 D 12 A 13 Y 14 15 16 17 18 19 20 21 22 23	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	265 55.2 13.0 280 27.2 13.0 2 294 59.2 13.0 2 309 31.2 13.0 3 324 03.2 13.0 3 338 35.2 13.0 353 07.2 12.9 7 39.1 13.0 22 11.1 12.9 S 36 43.0 13.0 51 15.0 12.9 65 46.9 12.9 80 18.8 12.9 S	3 19.4 15.7 58.2 3 03.7 15.7 58.2 5 2 48.0 15.8 58.3 2 32.2 15.7 58.3 2 16.5 15.8 58.3 2 00.7 15.8 58.3 2 00.7 15.8 58.3 1 44.9 15.8 58.3 1 29.1 15.8 58.4	°2 N 70 866420 8564520 N 5554520 45	13 42 14 20 14 46 15 06 15 23 15 37 15 49 16 00 16 10 16 30	^h m 13 28 14 20 14 52 15 16 15 34 15 50 16 03 16 14 16 24 16 33 16 41 16 48 17 03	<pre>b m 15 45 16 04 16 19 16 31 16 42 16 51 16 59 17 06 17 13 17 19 17 24 17 29 17 40</pre>	b m 20 22 20 33 20 42 20 49 20 55 21 00 21 04 21 08 21 12 21 15 21 18 21 20 21 26	 m 22 38 22 38 22 38 22 39 	h m 24 56 24 45 24 37 24 30 24 24 24 19 24 15 24 11 24 08 24 02 24 02 23 59 23 54	<pre>b m 00 56 00 45 00 37 00 30 00 24 00 19 00 15 00 11 00 08 00 05 00 02 25 22 25 11</pre>
01 023 04 05 06 V 08 D 09 N 10 E 09 N 10 E 12 D 13 A 14 Y 15 16 17 18	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0 21.9 15.9 58.5 0 37.8 15.9 58.5 0 53.7 16.0 58.5 1 05.7 15.9 58.5 1 25.6 15.9 58.5 1 25.6 15.9 58.6 1 15.7 15.9 58.6 2 13.3 15.9 58.6 2 29.2 15.9 58.6 2 29.2 15.9 58.6 2 29.2 15.9 58.6 2 45.1 16.0 58.6 3 17.0 15.8 58.7 3 32.8 15.9 58.7 4 36.4 15.9 58.7 4 20.5 15.8 58.7 4 36.3 15.9 58.7 4 36.3 15.9 58.7 4 36.3 15.9 58.7 4 36.3 15.9 </td <td>N 40 35 30 N 10 S 10 20 35 40 45 S 50 52 54 55 54 56 S 60</td> <td>16 46 17 00 17 12 17 33 17 51 18 08 18 25 18 43 19 05 19 18 19 32 19 50 20 12 20 22 20 34 20 48 21 04 21 23</td> <td>17 16 17 28 17 38 17 57 18 13 18 30 18 48 19 32 19 47 20 27 20 25 21 10 21 27 21 48 22 15 22 57 SUN</td> <td>17 50 17 59 18 08 18 24 18 40 18 56 19 15 19 37 20 25 20 23 20 46 21 15 21 59 22 24 23 03 <i>IIII</i> <i>IIII</i> <i>IIII</i></td> <td>21 30 21 34 21 37 21 43 21 48 21 53 21 58 22 03 22 03 22 03 22 12 22 15 22 19 22 24 22 26 22 29 22 31 22 34 22 38</td> <td>22 39 22 39</td> <td>23 49 23 46 23 42 23 31 23 26 23 21 23 26 23 22 23 16 23 17 23 04 22 59 22 54 22 59 22 54 22 59 22 54 22 24 22 40</td> <td>25 02 24 54 24 47 24 35 24 25 24 15 24 06 23 56 23 44 23 38 23 30 23 21 23 11 23 06 23 01 22 55 22 49 22 41</td>	N 40 35 30 N 10 S 10 20 35 40 45 S 50 52 54 55 54 56 S 60	16 46 17 00 17 12 17 33 17 51 18 08 18 25 18 43 19 05 19 18 19 32 19 50 20 12 20 22 20 34 20 48 21 04 21 23	17 16 17 28 17 38 17 57 18 13 18 30 18 48 19 32 19 47 20 27 20 25 21 10 21 27 21 48 22 15 22 57 SUN	17 50 17 59 18 08 18 24 18 40 18 56 19 15 19 37 20 25 20 23 20 46 21 15 21 59 22 24 23 03 <i>IIII</i> <i>IIII</i> <i>IIII</i>	21 30 21 34 21 37 21 43 21 48 21 53 21 58 22 03 22 03 22 03 22 12 22 15 22 19 22 24 22 26 22 29 22 31 22 34 22 38	22 39 22 39	23 49 23 46 23 42 23 31 23 26 23 21 23 26 23 22 23 16 23 17 23 04 22 59 22 54 22 59 22 54 22 59 22 54 22 24 22 40	25 02 24 54 24 47 24 35 24 25 24 15 24 06 23 56 23 44 23 38 23 30 23 21 23 11 23 06 23 01 22 55 22 49 22 41
19 20 21 22	103 50.9 47.5 118 50.7 47.3 133 50.4 . 47.0	25 23.3 12.2 39 54.5 12.2 54 25.7 12.2	5 23.8 15.8 58.8 5 39.6 15.7 58.8 5 55.3 15.8 58.8	Day	Eqn. of 00 ^h		Mer. Pass.	Mer. Upper	MO Pass. Lower		Phase
22 23	148 50.1 46.8 163 49.8 46.5 S.D. 16.3 d 0.2	68 56.9 12.1 83 28.0 12.1 S.D. 15.8	6 11.1 15.7 58.8 6 26.8 15.7 58.9 15.9 16.0	1 2 3	m s 03 17 03 46 04 14	03 32 04 00 04 28	h m 12 04 12 04 12 04 12 04	h m 15 42 16 28 17 15	h m 03 19 04 05 04 52	d 04 05 06	

XC FEBRUARY 15, 16, 17 (THURS., FRI., SAT.)

40		FEBRUART 13	, io, i/ (in	UK3., FKI., 37	<1.)
	S VENUS -4.6	MARS +1.3	JUPITER -2.5	SATURN +0.6	STARS
(GMT) G.H./		G.H.A. Dec.	G.H.A, Dec.	G.H.A. Dec.	Name S.H.A. Dec.
1500 144 4 01 159 4 02 174 4 03 189 5 04 204 5	5.9 227 20.3 04.7 9.4 242 22.1 04.9 1.8 257 23.9 • 05.0 3 272 25.6 05.2	221 45.9 523 28.8 236 46.4 28.7 251 46.8 28.5 266 47.3 · 28.4 281 47.8 28.3	53 41.1 N23 25.7 68 43.7 25.7 83 46.2 25.7 98 48.8 - 25.7 113 51.3 25.7	212 21.1 521 36.0 227 23.2 36.0 242 25.4 35.9 257 27.6 · · 35.9 272 29.8 35.8	Acamar 315 31.6 S40 20.8 Achernar 335 39.8 S57 17.4 Acrux 173 28.7 563 02.6 Adhara 255 26.0 S28 57.6 Aldebaran 291 09.4 N16 29.5
05 219 5 06 234 5 07 250 0 T 08 265 0 H 09 280 0 U 10 295 0 R 11 310 1	302 29.2 \$15 05.5 7 317 30.9 05.6 4.2 332 32.7 05.8 5.6 347 34.4 • 05.9 7.1 2 36.2 06.0 05.9	296 48.3 28.1 311 48.8 523 28.0 326 49.3 27.9 341 49.7 27.7 356 50.2 - 27.6 11 50.7 27.5 26 51.2 27.3	128 53.9 25.7 143 56.4 N23 25.7 158 59.0 25.7 174 01.5 25.8 189 04.1 - 25.8 204 06.6 25.8 219 09.2 25.8 219 09.2 25.8	287 32.0 35.8 302 34.2 S21 35.8 317 36.4 35.7 332 38.6 35.7 347 40.8 35.7 2 42.9 35.6 17 45.1 35.6	Alioth 166 35.3 N56 00.4 Alkaid 153 12.2 N49 21.3 Al Na'ir 28 05.9 S47 00.6 Alnilam 276 04.0 S 1 12.5 Alphard 218 13.0 S 8 37.0
S 12 325 1. D 13 340 1. A 14 355 1. Y 15 10 2 16 25 2. 17 40 2.	1.0 32 39.7 \$15 06.3 3.5 47 41.4 06.5 06.6 3.9 62 43.2 06.6 06.8 4.4 77 44.9 • 06.8 9 92 46.6 06.9	41 51.7 523 27.2 56 52.2 27.1 71 52.6 26.9 86 53.1 • 26.8 101 53.6 26.7 116 54.1 26.5	214 01.1 N23 25.8 243 14.7 N23 25.8 264 16.8 25.8 279 19.4 • 25.8 279 21.9 25.8 309 24.5 25.8	32 47.3 521 35.6 47 49.5 35.5 562 51.7 35.5 77 53.9 • 35.4 92 56.1 35.4 92 56.1 35.4 107 58.3 35.4	Alphacca 126 25.7 N26 44.5 Alpharatz 358 02.0 N29 02.2 Altair 62 25.6 N 8 50.3 Ankaa 353 33.1 S42 21.7 Antares 112 47.9 S26 24.7
18 55 2 19 70 3 20 85 3	3.8 122 50.1 \$15 07.2 .3 137 51.8 07.3 1.7 152 53.5 07.5 .2 167 55.2 07.6 182 56.9 07.8	131 54,6 523 26.4 146 55.1 26.3 161 55.5 26.1 176 56,0 - 26.0 191 56.5 25.8 206 57.0 25.7 25.7	324 27.0 N23 25.8 339 29.6 25.8 354 32.1 25.8 9 34.7 - 25.8 24 37.2 25.8 39 39.7 25.8	123 00.4 521 35.3 138 02.6 35.3 153 04.8 35.3 168 07.0 ·· 35.2 183 09.2 35.2 198 11.4 35.1	Arcturus 146 11.5 N19 13.7 Atrica 108 05.7 S69 00.5 Avior 234 24.7 S59 28.8 Bellatrix 278 50.6 N 6 20.5 Betelgeuse 271 20.1 N 7 24.4
1600 145 4 01 160 4 02 175 4	6 213 00.3 \$15 08.0 .1 228 02.0 08.2 .5 243 03.7 08.3 .0 258 05.4 08.5 .4 273 07.1 08.6	221 57.5 523 25.6 236 57.9 25.4 251 58.4 25.3 266 58.9 25.1 281 59.4 25.0 296 59.9 24.9	54 42.3 N23 25.8 69 44.8 25.9 84 47.4 25.9 99 49.9 - 25.9 114 52.5 25.9 129 55.0 25.9	213 13.6 S21 35.1 228 15.8 35.1 243 18.0 35.0 258 20.2 35.0 273 22.3 35.0 288 24.5 34.9	Canopus 264 03.6 S52 41.6 Capella 281 00.2 N45 59.6 Deneb 49 44.0 N45 14.5 Denebola 162 51.1 N14 37.4 Diphda 349 13.6 518 02.5
R 10 296 0	.8 318 12.1 09.0 .3 333 13.8 09.2 .8 348 15.5 09.3 .2 3 17.2 09.4	312 00.4 \$23 24.7 327 00.8 24.6 342 01.3 24.4 357 01.8 - 24.3 12 02.3 24.1 27 02.8 24.0	144 57.5 N23 25.9 160 00,1 25.9 175 02,6 25.9 190 05.2 - 25.9 205 07.7 25.9 25.9 220 10.2 25.9 25.9	303 26.7 S21 34.9 318 26.9 34.9 333 31.1 34.8 348 33.3 - 34.9 3 35.5 34.7 18 37.7 34.7	Dubhe 194 12.0 N61 48.1 Elnath 278 34.6 N28 36.1 Eltanin 90 54.6 N51 29.0 Enif 34 04.6 N 9 49.7 Fomalhaut 15 43.5 S29 40.6
D 12 326 1 A 13 341 1 Y 14 356 1 15 11 2 16 26 2 17 41 2	.6 48 22.1 09.8 .1 63 23.8 10.0 .6 78 25.4 • 10.1 .0 93 27.1 10.3	42 03.3 523 23.8 57 03.7 23.7 72 04.2 23.6 87 04.7 • 23.4 102 05.2 23.3 117 05.7 23.1	235 12.8 N23 25.9 250 15.3 25.9 265 17.9 25.9 280 20.4 25.9 295 22.9 25.9 310 25.5 25.9	33 39.9 \$21 34.7 48 42.1 34.6 63 44.2 34.6 78 46.4 34.6 93 48.6 34.5 108 50.8 34.5	Gocrux 172 20.3 \$57 03.5 Gienah 176 10.1 \$17 29.4 Hadar 149 12.8 \$60 19.5 Hamol 328 20.7 N23 25.1 Kaus Aust. 84 07.2 \$34 23.5
18 56 23 19 71 30 20 86 33 21 101 33 22 116 33 23 131 40	14 138 32.0 10.7 19 153 33.6 10.8 3 168 35.2 10.9 .8 183 36.6 11.1 .3 198 38.5 11.2	132 06.2 \$23 23.0 147 06.6 22.8 162 07.1 22.7 177 07.6 • 22.5 192 08.1 22.4 207 08.6 22.2	325 28.0 N23 26.0 340 30.6 26.0 355 33.1 26.0 10 35.6 26.0 25 38.2 26.0 40 40.7 26.0	123 53.0 S21 34.4 138 55.2 34.4 153 57.4 34.4 168 59.6 • 34.3 184 01.8 34.3 199 04.0 34.3	Kochab 137 18.6 N74 11.3 Markab 13 56.1 N15 09.1 Menkar 314 33.4 N 4 03.1 Menkar 14 32.4 N 4 03.1 Menkent 148 28.2 S36 19.4 Miaplacidus 221 42.8 S69 40.7
1700 146 42 01 161 49 02 176 42 03 191 54 04 206 52 05 221 55	.2 228 41.7 11.5 .7 243 43.3 11.6 .1 258 44.9 • 11.8 .6 273 46.5 11.9	222 09.1 S23 22.1 237 09.5 21.9 252 10.0 21.8 267 10.5 • • 21.6 282 11.0 21.5 297 11.5 21.3	55 43.2 N23 26.0 70 45.8 26.0 85 48.3 26.0 100 50.8 26.0 115 53.4 26.0 130 55.9 26.0	244 10.5 34.2 259 12.7 • 34.1 274 14.9 34.1 289 17.1 34.0	Nunki 76 20.2 S26 18.7 Peacock 53 47.1 S56 46.1 Pollux 243 48.7 N28 03.1 Procyon 245 17.7 N 5.0
06 236 57 07 252 00 S 08 267 07 A 09 282 00 T 10 297 07 U 11 312 00	.0 318 51.3 12.3 .4 333 52.9 12.4 .9 348 54.4 12.6 .4 3 56.0 12.7 .8 18 57.6 12.8	312 12.0 523 21.2 327 12.4 21.0 342 12.9 20.9 357 13.4 • 20.7 12 13.9 20.6 27 14.4 20.4	145 58.4 N23 26.0 161 01.0 26.0 26.0 176 03.5 26.0 20.0 191 06.0 • 26.0 206 08.6 26.0 221 11.1 26.1	319 21.5 34.0 334 23.7 33.9 349 25.9 • 33.9 4 28.1 33.9 19 30.3 33.8	Rosothague 96 22.8 N12 33.7 Regulus 208 01.7 N12 00.8 Rigel 281 28.7 S 8 12.8 Rigel 281 15.7 S 6 43.0 Sabik 102 32.7 S 5 43.0
R 12 327 12 D 13 342 14 A 14 357 12 Y 15 12 14 16 27 22 17 42 24	.8 49 00.7 13.1 .2 64 02.3 13.2 .7 79 03.9 13.3 .2 94 05.4 13.5 .6 109 07.0 13.6	42 14.9 523 20.3 57 15.3 20.1 72 15.8 19.9 87 16.3 • 19.8 102 16.8 19.6 117 17.3 19.5	236 13.6 N23 26.1 251 16.2 26.1 26.1 266 18.7 26.1 281 281 21.2 26.1 296 23.7 26.1 311 26.3 26.1 311 26.3 26.1	34 32.5 S21 33.8 49 34.7 33.8 64 36.8 33.7 79 39.0 • 33.7 94 41.2 33.6 109 43.4 33.6	Schedar 350 01.2 N56 29.2 Shaulo 96 45.9 S37 05.9 Sirius 258 48.9 S16 42.2 Spica 158 49.6 S11 06.8 Suhail 223 05.0 543 23.6
18 57 23 19 72 24 20 87 33 21 102 34 22 117 30 23 132 3	.5 139 10.1 13.9 .0 154 11.6 14.0 .5 169 13.2 14.1 .9 184 14.7 14.3	132 17.8 S23 19.3 147 18.2 19.2 162 18.7 19.0 177 19.2 - 18.8 192 19.7 18.8 192 19.7 192 19.7 18.7 18.7 19.0 192 19.7 18.7 18.7 18.7	326 28.8 N23 26.1 341 31.3 26.1 356 33.9 26.1 11 36.4 26.1 26 38.9 26.1 41 41.4 26.1	124 45.6 S21 33.6 139 47.8 33.5 154 50.0 33.5 169 52.2 • 33.5 184 54.4 33.4 199 56.6 33.4	Vega 80 51.1 N38 46.1 Zuben'ubi 137 24.8 516 00.2 S.H.A. Mer. Past. h m Venus 67 16.8 9 47 Mars 76 13.9 9 12
Mer. Papa. 24 14	· · · · · · · · · · · · · · · · · · ·	v 0.5 d 0.1	U 2.5 cl 0.0	v 2.2 d 0.0	Jupiter 268 58.7 20 18

xC FEBRUARY 15, 16, 17 (THURS., FRI., SAT.)

	SUN	<u> </u>	0, 1,	·	light		T	Mod	nrise	41
UT (GMT)	SUN	MOON	Lat.	Naut.	Civil	Sunrise	15	16	17	18
15 01 02 03 04 05 06 07 T 08 05 06 07 T 08 U 11 12 13 14 15 16 17 18 19 20 21	191 27.4 49.6 206 27.4 46.7 221 27.4 47.9 236 27.5 47.0 251 27.5 266 27.5 46.2 266 27.5 46.2 266 27.5 42.5 45.3 281 27.5 44.5 281 27.5 44.5 296 27.6 43.6 311 27.6 43.6 311 27.6 42.8 326 27.7 512 40.2 11 27.7 39.3 341 27.7 39.3 26 27.8 38.5 41 27.8 37.6 55.9 36.6 27.9 35.9 86 27.9 35.9 86 27.9 35.9 86 27.9 35.9 36.0 101 27.9 35.9 36.2 31.2 36.0 33.3 31.3 28.0 32.4	G.H.A. v Dec. d H.P. 302 44.5 15.2 \$24 32.1 11.9 \$4.4 317 18.7 15.1 14 44.0 11.9 \$4.4 317 18.7 15.1 14 44.0 11.9 \$4.4 316 52.8 15.1 14 \$5.9 11.8 \$4.4 346 26.9 15.1 15 0.7.7 11.7 \$4.4 1 0.0 0.5.0 15 31.1 11.6 \$4.4 30 0.9.0 15.0 S15 31.1 11.6 \$4.4 30 0.9.0 15.0 S15 31.1 11.6 \$4.4 30 16.9 14.8 16 05.6 11.4 \$4.3 30 16.9 14.8 16 05.6 11.4 \$4.3 30 16.1 15.0 S15 \$2.1 1.4 \$4.3 102 58.3 <td>°72 78864368 886438854 945888 9 9888488 8864388 9 9888488 9 9888488 9 9888488 9 988848 9 988488 9 988848 9 9888486989 9 988848 9 988848 9 988848 9 988848 9 988848 9 988848 9 988848 9 988848 9 988848 9 988848 9 988848 9 9888468 9 988848 9 988848 9 988848 9 988848 9 988848 9 9888468 9 9888668 9 9888468 9 9888668 9 9888668 9 98886666666666</td> <td>m m 06 11 06 01 06 07 06 06 06 07 06 06 06 07 06 06 05 06 05 56 05 56 05 55 05 56 05 55 05 105 05 105 05 105 05 105 05 105 05 105 05 105 05 105 05 105 05 105 04 36</td> <td>^h m 07 31 07 22 07 14 07 07 07 02 06 57 06 57 06 49 06 45 06 49 06 45 06 49 06 45 06 30 06 24 06 30 06 24 06 19 06 15 58 05 50 05 50 05 20 05 16 05 08</td> <td>* 708 49 08 49 08 10 08 03 07 52 07 44 07 30 07 24 07 18 07 07 07 00 06 52 06 45 06 29 06 20 06 11 06 02 05 54 1 05 54 1 05 54 1</td> <td>h m Ol 32 O0 57 O0 32 25 38 25 38 25 38 25 38 25 38 24 48 24 37 24 26 24 47 24 26 24 47 23 52 23 36 23 26 23 36 22 58 22 29 22 15 22 03 21 43 22 15 22 08 22 13 23 26 23 38 25 29 22 15 22 08 21 33 21 33 21 33 21 33 21 32 21 33 21 32 21 33 21 32 21 33 21 32 21 33 21 32 21 33 21 33 22 33 23 26 23 36 23 36 24 37 24 37 24 37 25 38 25 28 25 28 27 58 27 58 27 58 28 5</td> <td>h m 04 01 02 425 02 05 01 38 01 18 01 02 00 37 00 26 00 37 00 26 00 17 00 24 24 25 24 12 23 32 23 14 22 57 22 17 22 05</td> <td>h m 04 27 03 29 02 55 02 31 02 155 01 42 01 30 01 19 00 57 00 40 00 25 00 12 24 42 23 43 23 21 22 57 22 42</td> <td>h m 04 36 03 59 03 32 03 12 02 55 02 40 02 27 02 01 01 41 01 23 01 09 00 44 00 22 00 02 24 32 24 09 23 42 23 26</td>	°72 78864368 886438854 945888 9 9888488 8864388 9 9888488 9 9888488 9 9888488 9 988848 9 988488 9 988848 9 9888486989 9 988848 9 988848 9 988848 9 988848 9 988848 9 988848 9 988848 9 988848 9 988848 9 988848 9 988848 9 9888468 9 988848 9 988848 9 988848 9 988848 9 988848 9 9888468 9 9888668 9 9888468 9 9888668 9 9888668 9 98886666666666	m m 06 11 06 01 06 07 06 06 06 07 06 06 06 07 06 06 05 06 05 56 05 56 05 55 05 56 05 55 05 105 05 105 05 105 05 105 05 105 05 105 05 105 05 105 05 105 05 105 04 36	^h m 07 31 07 22 07 14 07 07 07 02 06 57 06 57 06 49 06 45 06 49 06 45 06 49 06 45 06 30 06 24 06 30 06 24 06 19 06 15 58 05 50 05 50 05 20 05 16 05 08	* 708 49 08 49 08 10 08 03 07 52 07 44 07 30 07 24 07 18 07 07 07 00 06 52 06 45 06 29 06 20 06 11 06 02 05 54 1 05 54 1 05 54 1	h m Ol 32 O0 57 O0 32 25 38 25 38 25 38 25 38 25 38 24 48 24 37 24 26 24 47 24 26 24 47 23 52 23 36 23 26 23 36 22 58 22 29 22 15 22 03 21 43 22 15 22 08 22 13 23 26 23 38 25 29 22 15 22 08 21 33 21 33 21 33 21 33 21 32 21 33 21 32 21 33 21 32 21 33 21 32 21 33 21 32 21 33 21 33 22 33 23 26 23 36 23 36 24 37 24 37 24 37 25 38 25 28 25 28 27 58 27 58 27 58 28 5	h m 04 01 02 425 02 05 01 38 01 18 01 02 00 37 00 26 00 37 00 26 00 17 00 24 24 25 24 12 23 32 23 14 22 57 22 17 22 05	h m 04 27 03 29 02 55 02 31 02 155 01 42 01 30 01 19 00 57 00 40 00 25 00 12 24 42 23 43 23 21 22 57 22 42	h m 04 36 03 59 03 32 03 12 02 55 02 40 02 27 02 01 01 41 01 23 01 09 00 44 00 22 00 02 24 32 24 09 23 42 23 26
23 16 00 02 03 04 05	161 28.1 30.7 176 28.1 S12 29.8 191 28.1 29.0 206 28.2 28.1	263 06.6 14.2 18 38.6 10.4 54.2 277 39.8 14.1 18 49.0 10.3 54.2 292 12.9 14.1 518 59.3 10.2 54.2 292 12.9 14.1 518 59.3 10.2 54.2 292 12.9 14.1 518 59.3 10.2 54.2 306 46.0 14.0 19 19.5 10.1 54.2 321 19.0 14.0 19 19.6 10.1 54.2 335 52.0 13.9 19 29.7 9.9 54.2 350 24.9 13.8 19 39.6 9.9 54.2 4 57.7 13.8 19 49.5 9.8 54.2 19 30.5 51.3 519 59.3 9.7 54.2	40 45 50 52 54 56 58 58 58 58 58	04 24 04 08 03 48 03 38 03 27 03 14 02 58 02 38	04 58 04 47 04 32 04 26 04 18 04 09 03 59 03 48	05 27 05 18 05 08 05 03 04 57 04 51 04 45 04 37	21 22 21 08 20 53 20 45 20 37 20 28 20 17 20 05	21 51 21 34 21 14 21 04 20 53 20 41 20 27 20 10	22 26 22 06 21 42 21 30 21 16 21 01 20 42 20 19	23 08 22 46 22 19 22 05 21 49 21 31 21 09 20 39
07 08	281 28.3 23.8 296 28.4 22.9	34 03.2 13.7 20 09.0 9.7 54.2 48 35.9 13.6 20 18.7 9.5 54.2	Lat.	Sunset	Jwili Civil	ght Naut.	15	моо 16	nset 17	18
R 10 I 11 D 12 Y 14 15 16 17 17 01 02 02 02 02 02 02 02 02 02 02	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	63 08.5 13.6 20 28.2 9.5 54.2 77 41.1 13.4 20 37.7 9.4 54.2 92 13.5 20 47.1 9.2 54.2 106 46.0 13.4 220 56.3 9.2 54.2 121 18.4 13.3 21 05.5 9.2 54.2 121 18.4 13.3 21 05.5 9.2 54.2 125 22.9 13.2 21 23.7 8.9 54.2 150 22.9 13.2 21 23.7 8.9 54.2 150 22.9 13.2 21 23.7 8.9 54.2 179 27.2 13.1 21 41.4 8.8 54.2 223 03.3 12.8 $20.7.4$ 8.5 54.2 223 03.3 12.8 22 07.8 8.5 54.2 223 03.3 12.8 22 07.8 8.5 54.2 237 35.1 12.9 22 15.9 8.3 54.2 237 35.1 12.9 22 15.8 8.6 54.2 237 35.1 12.9 22 15.8 8.6 54.2 237 35.1 12.9 24.2 8.3 54.2 237 35.1 12.9 24.2 8.3 54.2 237 35.1 12.4 23 $95.4.2$ 8.3 2465 <td>N 10 0 \$ 10 20 30 35 40 45 5 \$ 50 52 54 58</td> <td>h m 15 40 16 00 16 15 16 27 16 36 17 00 17 05 17 01 17 05 17 15 17 20 17 27 17 37 17 49 18 00 18 00 18 07 18 26 18 36 18 47 19 09 19 19 19 24 19 35 19 42 19 50</td> <td>19 12 19 20 19 29 19 40 19 54 20 01 20 09 20 17 20 27 20 38 SUN</td> <td>h m 18 19 18 20 18 21 18 22 18 24 18 26 18 27 18 26 18 27 18 26 18 27 18 28 18 30 18 31 18 36 18 42 18 48 18 55 19 03 19 13 19 20 20 38 20 48 20 38 20 48 21 12 21 12 21 46</td> <td>b m D5 57 06 34 07 00 07 21 07 37 08 02 08 12 08 29 08 42 08 56 09 07 09 26 09 941 10 95 10 10 10 10 10 10 11 18 11 33 11 39 11 56 12 05 12 16</td> <td>m 05 02 06 22 07 00 07 27 07 08 05 08 05 08 20 08 43 08 05 08 07 09 30 09 9 10 18 10 50 11 43 12 23 12 43 12 52 13 14 13 28 13 44</td> <td>h m 06 13 07 12 07 46 08 11 08 31 08 831 09 48 09 25 09 48 10 225 10 355 10 355 10 35 10 58 11 18 12 16 12 39 13 28 13 52 14 44 14 32 14 50 15 12 ON</td> <td>h m 07 47 08 24 08 51 09 12 09 29 09 29 09 29 09 57 10 24 10 45 11 12 12 47 13 10 13 36 13 51 14 09 14 31 14 58 15 15 16 07 16 36</td>	N 10 0 \$ 10 20 30 35 40 45 5 \$ 50 52 54 58	h m 15 40 16 00 16 15 16 27 16 36 17 00 17 05 17 01 17 05 17 15 17 20 17 27 17 37 17 49 18 00 18 00 18 07 18 26 18 36 18 47 19 09 19 19 19 24 19 35 19 42 19 50	19 12 19 20 19 29 19 40 19 54 20 01 20 09 20 17 20 27 20 38 SUN	h m 18 19 18 20 18 21 18 22 18 24 18 26 18 27 18 26 18 27 18 26 18 27 18 28 18 30 18 31 18 36 18 42 18 48 18 55 19 03 19 13 19 20 20 38 20 48 20 38 20 48 21 12 21 12 21 46	b m D5 57 06 34 07 00 07 21 07 37 08 02 08 12 08 29 08 42 08 56 09 07 09 26 09 941 10 95 10 10 10 10 10 10 11 18 11 33 11 39 11 56 12 05 12 16	m 05 02 06 22 07 00 07 27 07 08 05 08 05 08 20 08 43 08 05 08 07 09 30 09 9 10 18 10 50 11 43 12 23 12 43 12 52 13 14 13 28 13 44	h m 06 13 07 12 07 46 08 11 08 31 08 831 09 48 09 25 09 48 10 225 10 355 10 355 10 35 10 58 11 18 12 16 12 39 13 28 13 52 14 44 14 32 14 50 15 12 ON	h m 07 47 08 24 08 51 09 12 09 29 09 29 09 29 09 57 10 24 10 45 11 12 12 47 13 10 13 36 13 51 14 09 14 31 14 58 15 15 16 07 16 36
21 22	131 30.0 50.7 146 30.0 49.8	226 01.0 11.3 25 08.8 5.8 54.4 240 31.3 11.2 25 14.6 5.8 54.4	Day	Eqn. of 00 h	12"	Mer. Pass.	Mer. 1	lower	d	hase
	161 30.1 48.9 S.D. 16.2 d 0.9	255 01.5 11.1 25 20.4 5.6 54.4 S.D. 14.8 14.8 14.8	16	14 11 14 08 14 04	14 06	12 14 12 14 12 14	03 56 04 40 05 26	17 02	20 21 22	

XC __ APRIL 1, 2, 3 (SUN., MON., TUES.)

UT ARIES VENUS -4	4 MARS +1.0	JUPITER -2.2	SATURN +0.6	STARS
(GMT) G.H.A. G.H.A. Dec.	G.H.A. Dec.	G.H.A. Dec.	G.H.A. Dec.	Name S.H.A. Dec.
1 00 189 05.7 222 41.3 512 06 01 204 08.2 237 41.2 06 02 219 10.6 252 41.2 05 03 234 13.1 267 41.2 04 04 249 15.6 282 41.2 04 05 264 18.0 297 41.1 03	7 231 09.2 \$17 26.0 1 246 09.8 25.5 5 261 10.4 25.0 9 276 11.0 • 24.4 3 291 11.5 23.9	111 07.4 29.4 126 09.6 29.4 141 11.7 · 29.4 156 13.9 29.4	252 48.9 S21 02.5 267 51.2 02.5 282 53.5 02.4 297 55.9 02.4 312 58.2 02.4 328 00.5 02.4	Acamar 315 31.8 540 20.7 Achernar 335 40.0 557 17.2 Acrux 173 28.5 563 02.9 Adhara 255 26.2 528 57.7 Aldebaran 291 09.6 N16 29.5
06 279 20.5 312 41.1 S12 03 07 294 23.0 327 41.1 02 06 309 25.4 342 41.0 02 06 309 25.4 342 41.0 02 03 327 74.1 02 5 09 324 27.9 357 41.0 • 01 U 10 339 30.3 12 41.0 00 N 11 354 32.8 27 40.9 12 00	2 321 12.7 517 22.9 6 336 13.3 22.4 0 351 13.9 21.8 5 6 14.5 - 21.3 9 21 15.1 20.8	186 18.3 N23 29.4 201 20.4 29.4	328 00.5 02.4 343 02.8 S21 02.4 358 05.1 02.3 13 07.5 02.3 28 09.8 - 02.3 43 12.1 02.3 58 12.1 02.3 58 14.4 02.3 02.3	Alioth 166 35.1 N56 00.6 Alkaid 153 11.9 N49 21.4 Al No [*] ir 28 05.7 S47 00.4 Alnilam 276 04.1 S 1 12.5 Alphard 218 13.0 S 8 37.1
D 12 9 35.3 42 40.9 S11 59 A 13 24 37.7 57 40.9 59 Y 14 39 40.2 72 40.8 58 15 54 42.7 87 40.8 ·· 57 16 69 45.1 102 40.8 57 17 84 47.6 117 40.7 56	7 51 16.3 517 19.7 1 66 16.8 19.2 5 81 17.4 18.7 9 96 18.0 •• 18.2 4 111 18.6 17.7	276 31.3 N23 29.3 291 33.5 29.3 306 35.6 29.3 321 37.8 • 29.3 336 40.0 29.3 351 42.1 29.3	73 16.8 \$21 02.2 02.2 03 103 21.4 02.2 03 21.4 02.2 113 21.4 02.2 118 23.7 • 02.2 118 23.7 • 02.2 118 23.7 • 02.2 118 23.4 02.2 118 23.4 02.2 1133 26.1 02.2 123 24.4 02.2 133 26.4 02.2 148 28.4 02.1 148 28.4 02.1 148 28.4 02.1 148 26.4 02.1 148 26.4 02.1 148 26.4 02.1 148 26.4 02.1 148 <	Alphecca 126 25.4 N26 44.5 Alpheratz 358 02.0 N29 02.1 Altair 62 25.3 N 8 50.3 Ankaa 353 33.1 S42 21.5 Antares 112 47.5 S26 24.8
18 99 50.1 132 40.7 S11 56 19 114 52.5 147 40.7 55 20 129 55.0 162 40.6 55 21 144 57.5 177 40.6 - 54 22 159 59.9 192 40.6 53 23 175 02.4 207 40.5 53	2 141 19.8 \$17 16.6 6 156 20.4 16.1 0 171 21.0 15.6 4 186 21.6 - 15.0 3 201 22.2 14.5	6 44.3 N23 29.3 21 46.5 29.3 36 48.7 29.3 51 50.8 - 29.3 66 53.0 29.3 81 55.2 29.3	163 30.7 \$21 02.1 178 33.0 02.1 1 193 35.4 02.1 2 208 37.7 02.0 223 40.0 02.0 238 42.3 02.0 23 02.0	Arcturus 146 11.2 N19 13.7 Atria 108 04.8 S69 00.6 Avior 234 25.1 S59 28.9 Bellatrix 278 50.8 N 6 20.5 Betteigeuse 271 20.2 N 7 24.4
2 00 190 04.8 222 40.5 511 52. 01 205 07.3 237 40.4 52. 02 220 09.8 252 40.4 51. 03 235 12.2 267 40.4 50. 04 250 14.7 282 40.3 50. 05 265 17.2 297 40.3 49.	5 231 23.3 517 13.5 246 23.9 12.9 12.9 5 261 24.5 12.4 9 262 25.1 11.9 29 25.7 11.4	96 57.3 N23 29.3 111 59.5 29.3 127 01.7 29.3 142 03.8 29.3 157 06.0 29.3 172 08.2 29.3	253 44.7 S21 02.0 268 47.0 02.0 283 49.3 01.9 298 51.6 • 01.9 313 54.0 01.9 326 56.3 01.9 326 56.3 01.9	Canopus 264 03.9 S52 41.6 Capella 281 00.4 N45 59.6 Deneb 49 43.7 N45 14.4 Denebola 182 51.0 N14 37.4 Diphda 349 13.6 S18 02.4
06 280 19.6 312 40.2 \$11 49. 07 295 22.1 327 40.2 48. 08 310 24.6 342 40.2 47. M 09 325 27.0 357 40.1 • 47. O 10 340 29.5 12 40.1 46. N 11 355 32.0 27 40.0 46.	336 27.5 09.8 351 28.1 09.3 6 28.7 08.7 21 29.3 08.2	187 10.3 N23 29.3 202 12.5 29.3 217 14.7 29.3 232 16.8 - 29.3 247 19.0 29.3 262 21.2 29.3	343 58.6 S21 01.9 359 01.0 01.8 01.8 14 03.3 01.8 01.8 29 05.6 • 01.8 44 07.9 01.8 59 10.3 01.8	Dubhe 194 12.0 N61 48.2 Elnath 278 34.8 N28 36.1 Eltanin 90 54.1 N51 29.0 Enif 34 04.4 N 9 49.6 Fomalhaut 15 43.3 S29 40.4
D 12 10 34.4 42 40.0 \$11 45. A 13 25 36.9 57 40.0 44. Y 14 40 39.3 72 39.9 44. 15 55 41.8 87 39.9 - 43. 16 70 44.3 102 39.8 43. 17 85 46.7 117 39.8 42.	66 31.0 06.6 81 31.6 06.1 96 32.2 · 05.6 111 32.8 05.0	277 23.3 N23 29.3 292 25.5 29.3 307 27.7 29.3 322 29.8 29.3 337 32.0 29.3 352 34.2 29.3	/4 12.6 521 01.7 89 14.9 01.7 104 17.2 01.7 119 19.6 · · 01.7 134 21.9 01.7 149 24.2 01.6	Göcrux 172 20.1 S57 03.7 Gienah 176 10.0 S17 29.5 Hador 149 12.4 S60 19.7 Hamal 328 20.8 N23 25.0 Kaus Aust. 84 06.8 S34 23.4
18 100 49.2 132 39.8 \$11 41. 19 115 51.7 147 39.7 41. 20 130 54.1 162 39.7 40. 211 145 56.6 177 39.6 40. 22 160 59.1 192 39.6 39. 23 176 01.5 207 39.5 38.	156 34.6 03.4 171 35.2 02.9 186 35.8 02.4 201 36.4 01.9 216 37.0 01.3	7 36.3 N23 29.3 22 38.5 29.3 37 40.6 29.3 52 42.8 - 29.3 67 45.0 29.3 82 47.1 29.3	164 26.6 S21 01.6 179 28.9 01.6 194 31.2 01.6 209 33.5 • 01.6 224 35.9 01.5 239 38.2 01.5	Kochab 137 17.8 N74 11.4 Markab 13 56.0 N15 09.0 Menkar 314 33.5 N 4 03.1 Menkar 148 27.9 S36 19.5 Mioplacidus 221 43.2 S69 40.9
300 191 04.0 222 39.5 511 38. 01 206 06.4 237 39.4 37. 02 221 08.9 252 39.4 37. 03 236 11.4 267 39.3 36. 04 251 13.8 282 39.3 35. 05 266 16.3 297 39.3 35.	246 38.2 17 00.3 261 38.8 16 59.7 276 39.3 59.2 291 39.9 58.7	97 49.3 N23 29.3 112 51.5 29.3 127 53.6 29.3 142 55.8 29.3 157 57.9 29.3 173 00.1 29.3	254 40.5 S21 01.5 269 42.9 01.5 284 45.2 01.5 299 47.5 · · 01.4	Mirfak 309 05.9 N49 49.8 Nunki 76 19.8 526 18.6 Peacock 53 46.6 556 45.9 Pollux 243 48.9 N28 03.1 Procyon 245 17.9 N 5 15.0
06 281 18.8 312 39.2 \$11 34. 07 296 21.2 327 39.2 33.4 T 06 311 23.7 342 39.1 33.5 U 09 326 26.2 357 39.1 • 32.5 E IO 341 28.6 12 39.0 32.5 S 11 356 31.1 27 39.0 31.4	336 41.7 57.1 351 42.3 56.5 6 42.9 56.0 21 43.5 55.5	188 02.3 N23 29.3 203 04.4 29.3 218 06.6 29.3 233 08.7 29.3 248 10.9 29.3 263 13.1 29.3	344 54.5 521 01.4 359 56.8 01.4 14 59.2 01.3 30 01.5 • 01.3	Regulus 208 01.7 N12 00.8 Rigel 281 28.9 S 8 12.8
D 12 11 33.6 42 38.9 511 30.1 A 13 26 36.0 57 38.9 30.2 30.1 Y 14 41 38.5 72 38.8 29.4 15 56 40.9 87 38.8 29.4 16 71 43.4 102 38.7 28.6 16 71 43.4 102 38.7 28.7 17 86 45.9 117 38.7 27.1	66 45.3 53.9 81 45.9 53.3 96 46.5 • 52.8 111 47.1 52.3 126 47.7 51.7	323 21.7 · · 29.2 338 23.8 29.2	75 08.5 521 01.3 90 10.8 01.2 105 13.2 01.2 120 15.5 • 01.2	Schedar 350 01.3 N56 29.1 Shoula 96 45.4 \$37 05.9 Sirius 258 49.1 \$16 42.3 Spico 158 49.3 \$11 06.9 Suhail 223 05.1 \$43 23.8
18 101 48.3 132 38.6 S11 27.1 19 116 50.8 147 38.6 26.5 20 131 53.3 162 38.5 25.3 21 146 55.7 177 38.5 25.3 22 161 58.2 192 38.4 24.4 23 177 00.7 207 38.4 24.4	156 48.9 50.6 171 49.5 50.1 186 50.1 • 49.6 201 50.7 49.0	23 30.3 29.2 38 32.5 29.2 53 34.6 29.2 68 36.8 29.2	165 22.5 S21 01.1 180 24.8 01.1 195 27.2 01.1 210 29.5 · · · 01.1 225 31.8 01.1	Zuben'ubi 137 24.5 S16 00.3 S.H.A. Mer. Pass. Yenus 32 35.6 9 09
Mer. Poss. 11 17.8 v 0.0 d 0.4		v 2.2 d 0.0		Jupiter 266 52.5 17 30

xC ____ APRIL 1, 2, 3 (SUN., MON., TUES.)

Chi Chi Chi Chi Chi Li 2 3 4 a b c A b c c b c c c b c <t< th=""><th>UI SURV Lot. Hours Cuil Name L Z 3 4 (GAT) G. M.A. P OR. M. N 12 13 57.7 14 21 13 16 13 58.97 N 12 13 58.97 12 13 58.97 12 13 58.97 12 13 58.97 12 13 58.97 12 13 58.97 12 13 58.97 12 13 58.97 12 13 59.77 13 14 17 14 15 12 14 15 14 16 15 16 <t< th=""><th></th><th></th><th></th><th>A R</th><th>T (30</th><th></th><th>(()))), ((), (), (), (), (), (), (), (),</th><th>1023</th><th>···,</th><th></th><th></th><th>71</th></t<></th></t<>	UI SURV Lot. Hours Cuil Name L Z 3 4 (GAT) G. M.A. P OR. M. N 12 13 57.7 14 21 13 16 13 58.97 N 12 13 58.97 12 13 58.97 12 13 58.97 12 13 58.97 12 13 58.97 12 13 58.97 12 13 58.97 12 13 58.97 12 13 59.77 13 14 17 14 15 12 14 15 14 16 15 16 <t< th=""><th></th><th></th><th></th><th>A R</th><th>T (30</th><th></th><th>(()))), ((), (), (), (), (), (), (), (),</th><th>1023</th><th>···,</th><th></th><th></th><th>71</th></t<>				A R	T (30		(()))), ((), (), (), (), (), (), (), (),	1023	···,			71
G.R.A. Dec. G.R.A. Dec. d. R.R. c c r <	Gr.A. Dec. G.H.A. Dec. d. H.F. No D. D. <thd.< th=""> <thd.< th=""> <thd.< th=""></thd.<></thd.<></thd.<>		SUN	٨	NOON	Lat.		-	Sunrise	1			4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	100000 0000000000000000000000000000000	G.H.A. Dec. 0 7 0 7 178 58.7 N 4 21.4 1193 58.9 22.3 2 208 59.1 23.3 2 208 59.1 23.3 2 23 59.3 . 24.3 4 238 59.7 26.2 5 253 59.7 26.2 6 268 59.9 N 4 299 00.2 29.1 18 299 00.6 31.0 329 01.6 31.0 329 01.6 32.0 2359 01.0 N 4 39 14 01.2 33.9 314 01.2 33.9 34.4 314 01.2 39.7 314 02.5 40.7 38 02.1 N 4 38 02.1 N 44.5 194 02.4 42.6 144 02.	o , 107 32.9 3.6 121 55.5 3.7 136 18.2 3.7 165 03.6 3.9 179 26.5 3.8 193 49.3 3.9 208 12.2 4.0 222 35.2 4.0 226 58.2 4.1 251 21.3 4.1 265 3.8 17.6 306 54.2 4.0 280 07.6 4.3 304 30.9 4.3 305 54.2 4.4 323 17.6 4.5 337 41.1 4.5 352 04.6 4.7 6 28.3 4.6 20 51.9 4.8 351 15.7 4.9 49 39.6 5.0 78 27.5 5.1 92 51.6 5.2	0 7 7 0 N27 15.8 0.1 59.3 27 15.9 0.2 59.3 27 15.7 0.3 59.2 27 15.4 0.5 59.2 27 14.9 0.7 59.2 27 14.2 0.8 59.2 27 14.2 0.8 59.2 27 12.4 1.5 59.1 27 12.3 1.2 59.1 27 12.3 1.2 59.1 27 0.6 1.6 59.0 27 08.0 1.8 59.0 27 08.0 1.8 59.0 27 06.2 1.9 59.0 27 02.1 2.3 58.9 26 57.6 2.5 58.9 26 57.7 3.0 58.8 26 51.7 3.0 58.8 26 44.7 3.9	N 72 7270 88 8 8 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	01 29 02 15 02 44 03 02 03 36 03 47 03 56 04 04 11 04 18 04 23 04 51 04 56 05 05 11 04 56 05 11 05 18 05 19 05 17 05 12 05 12 05 06	03 37 03 54 04 07 04 18 04 26 04 34 04 40 04 51 04 55 04 59 05 03 05 10 05 10 05 21 05 21 05 31 05 36 05 43 05 45 05 47 05 48 05 49 05 49 05 49 05 49 05 49 05 49	04 52 05 00 05 06 05 12 05 16 05 20 05 23 05 26 05 29 05 31 05 33 05 35 05 43 05 45 37 05 44 05 53 05 49 05 53 06 00 06 04 06 07 06 11 06 11 06 118 06 22 06 23 06 27	06 09 06 58 07 29 07 53 08 12 08 28 08 42 09 10 09 32 09 51 10 07 10 34 10 07 10 34 11 18 11 40 12 03 12 30 13 04 13 27 13 55 14 09 14 25	06 35 07 48 08 24 08 49 09 10 09 27 09 41 09 54 10 19 10 40 10 57 11 12 11 37 11 58 12 18 12 38 12 59 13 24 13 39 13 55 14 15 14 40 14 52 15 06	08 09 09 09 40 10 03 10 21 10 37 10 50 11 01 11 11 11 33 11 50 12 04 12 17 12 38 12 56 13 14 10 14 22 13 14 12 16 14 52 14 52 15 12 15 33 15 45 15 45 15 35	09 26 10 15 10 46 11 08 11 26 11 41 11 54 12 14 12 22 12 30 12 46 12 29 13 10 13 20 13 37 13 51 14 04 14 18 14 32 14 48 14 58 15 08 15 21 15 59
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	06	269 D4.3 N 4 50.3 284 04.5 51.3	179 18.1 5.7 193 42.8 5.8	N25 59.2 5.2 58.4 25 54.0 5.4 58.4			Twili	ight	15 38	16 04 Mod	16 15 inset	16 20
23 164 11.9 29.6 51 37.6 10.1 20 33.4 10.4 57.2 1 04 05 03 56 12 04 17 33 05 02 06 2 03 48 03 39 12 04 18 32 06 03 07	S.D. 16.0 d 1.0 S.D. 16.1 15.9 15.7 3 03 30 03 21 12 03 19 26 07 00 08	MONDAY 30003045 667899111 12114151617 1819201222 300023045 6678991011 12114151617 1819201222	314 04.9 53.2 329 05.1 54.11 344 05.2 55.1 359 05.4 N 4 359 05.4 N 4 369 05.8 58.0 44 06.0 58.9 59 06.2 4 59.9 74 06.4 5 01.8 104 06.7 02.8 119 119 06.5 N 5 01.8 104 06.7 02.8 119 05.7 134 07.1 04.7 149 07.3 05.7 164 07.5 06.6 179 07.6 N<5	222 32.6 6.0 236 57.6 6.1 251 22.7 6.2 254 7.9 6.3 265 47.9 6.3 280 13.2 6.5 294 38.7 6.5 309 04.2 6.6 323 29.8 6.7 337 55.5 6.9 352 21.4 6.9 6 47.3 7.1 21 13.4 7.1 235 39.5 7.3 50 05.8 7.3 64 32.1 7.5 78 58.6 7.6 93 25.2 7.7 107 51.9 7.8 112 18.7 7.9 136 9.7 8.3 180 07.0 8.3 194 34.3 8.5 209 01.8 8.5 223 29.3 <	25 43.1 5.6 58.3 25 37.5 5.8 58.3 25 37.5 5.8 58.3 25 37.5 5.8 58.3 25 37.5 5.8 58.2 25 13.3 6.4 58.2 25 13.3 6.4 58.2 25 06.9 6.5 58.1 25 06.9 6.5 58.1 24 37.7 6.8 58.0 24 39.9 7.1 58.0 24 32.8 7.3 58.0 24 32.8 7.3 58.0 24 32.8 7.3 58.0 24 18.1 7.5 57.9 24 10.6 7.7 57.9 23 55.2 8.0 57.8 23 31.0 8.3 57.8 23 31.0 8.3 57.7 23 57.7 8.6 </td <td>N 72 N 70 68 66 64 62 60 N 58 56 54 52 60 N 58 56 54 52 00 S 10 20 35 40 S 52 55 25 55 55 55 55 55 55 55 55 55 55 5</td> <td>19 18 19 10 19 03 18 58 18 53 18 49 18 40 18 37 18 35 18 37 18 35 18 37 18 35 18 37 18 35 18 33 18 29 18 22 18 22 18 19 18 25 18 22 18 19 18 11 18 07 18 07 18 07 18 07 18 07 18 07 18 07 18 07 18 07 17 54 17 55 17 45 17 45 17 45 17 38 17 35 Eqn. of 00 h m , 04 05 03 48</td> <td> m 20 35 20 17 20 03 20 17 20 17 20 13 19 52 19 23 19 24 18 37 18 32 18 24 18 25 18 24 18 22 18 20 18 18 17 18 17 19 18 19 18 19 18 19 18 18 18 18 18 18 19 18 18 18 19 18 18 18 19 18 18 19 18 18 19 18 19 18 19 18 19 18 19 18 19 18 18 18 19 18 18 18<!--</td--><td><pre>b m 22 51 21 59 21 28 21 05 20 48 20 24 20 23 20 13 20 05 19 58 19 51 19 45 19 34 19 25 19 11 19 45 19 34 19 25 18 47 18 48 18 47 18 48 18 47 18 48 18 47 18 48 18 47 18 48 18 51 18 54 18 56 18 58 19 00 19 02 19 05 b m 12 04</pre></td><td>** 03 03 03 02 13 01 02 13 01 01 03 04 137 01 01 01 03 04 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 21 22 24 21 20 20 20 20 20 20 20 20 21</td><td>""""""""""""""""""""""""""""""""""""</td><td>h m 05 51 05 02 04 07 03 32 03 32 03 32 03 32 03 32 03 32 03 32 03 32 03 32 03 32 03 32 03 32 04 01 02 33 02 25 02 00 04 04 00 44 00 44 01 24 02 23 03 24 23 49 23 18 23 18 23 18 23 18 23 18 24 26 00 18 04 06</td><td>h m Colored Colored C</td></td>	N 72 N 70 68 66 64 62 60 N 58 56 54 52 60 N 58 56 54 52 00 S 10 20 35 40 S 52 55 25 55 55 55 55 55 55 55 55 55 55 5	19 18 19 10 19 03 18 58 18 53 18 49 18 40 18 37 18 35 18 37 18 35 18 37 18 35 18 37 18 35 18 33 18 29 18 22 18 22 18 19 18 25 18 22 18 19 18 11 18 07 18 07 18 07 18 07 18 07 18 07 18 07 18 07 18 07 17 54 17 55 17 45 17 45 17 45 17 38 17 35 Eqn. of 00 h m , 04 05 03 48	 m 20 35 20 17 20 03 20 17 20 17 20 13 19 52 19 23 19 24 18 37 18 32 18 24 18 25 18 24 18 22 18 20 18 18 17 18 17 19 18 19 18 19 18 19 18 18 18 18 18 18 19 18 18 18 19 18 18 18 19 18 18 19 18 18 19 18 19 18 19 18 19 18 19 18 19 18 18 18 19 18 18 18<!--</td--><td><pre>b m 22 51 21 59 21 28 21 05 20 48 20 24 20 23 20 13 20 05 19 58 19 51 19 45 19 34 19 25 19 11 19 45 19 34 19 25 18 47 18 48 18 47 18 48 18 47 18 48 18 47 18 48 18 47 18 48 18 51 18 54 18 56 18 58 19 00 19 02 19 05 b m 12 04</pre></td><td>** 03 03 03 02 13 01 02 13 01 01 03 04 137 01 01 01 03 04 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 21 22 24 21 20 20 20 20 20 20 20 20 21</td><td>""""""""""""""""""""""""""""""""""""</td><td>h m 05 51 05 02 04 07 03 32 03 32 03 32 03 32 03 32 03 32 03 32 03 32 03 32 03 32 03 32 03 32 04 01 02 33 02 25 02 00 04 04 00 44 00 44 01 24 02 23 03 24 23 49 23 18 23 18 23 18 23 18 23 18 24 26 00 18 04 06</td><td>h m Colored Colored C</td>	<pre>b m 22 51 21 59 21 28 21 05 20 48 20 24 20 23 20 13 20 05 19 58 19 51 19 45 19 34 19 25 19 11 19 45 19 34 19 25 18 47 18 48 18 47 18 48 18 47 18 48 18 47 18 48 18 47 18 48 18 51 18 54 18 56 18 58 19 00 19 02 19 05 b m 12 04</pre>	** 03 03 03 02 13 01 02 13 01 01 03 04 137 01 01 01 03 04 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 21 22 24 21 20 20 20 20 20 20 20 20 21	""""""""""""""""""""""""""""""""""""	h m 05 51 05 02 04 07 03 32 03 32 03 32 03 32 03 32 03 32 03 32 03 32 03 32 03 32 03 32 03 32 04 01 02 33 02 25 02 00 04 04 00 44 00 44 01 24 02 23 03 24 23 49 23 18 23 18 23 18 23 18 23 18 24 26 00 18 04 06	h m Colored Colored C

120	xC	JUNE 15,	16, 17 (FRI.	, SAT., SUN.)	
	VENUS -4.0	MARS +0.4	JUPITER - 1.9	SATURN +0.2	STARS
G.H.A. d h 1500 263 01.1 01 278 03.6 02 293 06.1	G.H.A. Dec. 216 43.6 N15 22.2 231 43.2 23.0 246 42.7 23.9	G.H.A. Dec. 252 25.4 N 2 24.3 267 26.2 25.0 282 27.0 25.6	G.H.A. Dec. 155 52.4 N22 41.6 170 54.3 41.5 185 56.2 41.4	G.H.A. Dec. 327 05.4 S21 11.1 342 08.0 21.1 357 10.6 11.1	Name S.H.A. Dec. Acamar 315 31.6 540 20.3 Achernar 335 39.6 557 16.7 Acrus 173 28.8 563 03.2
03 308 08.5 04 323 11.0 05 338 13.4 06 353 15.9	261 42.3 · · 24.7	297 27.8 · · 26.3 312 28.6 27.0 327 29.4 27.7 342 30.2 N 2 28.4	200 58.1 41.4 216 00.0 41.3 231 01.8 41.3 246 03.7 N22 41.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Adhara 255 26.5 S28 57.5 Aldebaran 291 09.5 N16 29.5
07 8 18.4 08 23 20.8 F 09 38 23.3 R 10 53 25.8	321 40.5 28.1 336 40.0 29.0 351 39.6 • 29.8 6 39.1 30.7	357 31.0 29.1 12 31.8 29.8 27 32.6 · · 30.5 42 33.4 31.2	261 05.6 41.1 276 07.5 41.1 291 09.4 - 41.0 306 11.3 41.0	72 23.7 11.3 87 26.3 11.3 102 28.9 11.3 117 31.6 11.4	Aliosth 166 35.3 N56 00.8 Alkoid 153 12.0 N49 21.7 Al Na'ir 28 04.9 547 00.2 Alniam 276 04.2 \$12.4 Alphord 218 13.2 \$8 37.1
i 11 68 28.2 D 12 83 30.7 A 13 96 33.2 Y 14 113 35.6 15 128 38.1	21 38.6 31.5 36 38.2 N15 32.3 51 37.7 33.2 66 37.3 34.0 81 36.8 34.9	57 34.2 31.8 72 35.0 N 2 32.5 87 35.8 33.2 102 36.6 33.9 117 37.4 • 34.6	321 13.1 40.9 336 15.0 N22 40.8 351 16.9 40.8 6 18.8 40.7 21 20.7 • 40.7	132 34.2 11.4 147 36.8 S21 11.4 162 39.4 11.5 177 42.0 11.5 192 44.6 - 11.5 11.5	Alphecca 126 25.2 N26 44.7 Alpheratz 358 01.5 N29 02.2 Altair 62 24.8 N 8 50.5 Ankaa 353 32.6 542 21.2
16 143 40.6 17 158 43.0 18 173 45.5 19 188 47.9	96 36.3 35.7 111 35.9 36.6 126 35.4 N15 37.4 141 35.0 38.2	132 38.3 35.3 147 39.1 36.0 162 39.9 N 2 36.7 177 40.7 37.4	36 22.5 40.6 51 24.4 40.5 66 26.3 N22 40.5 81 28.2 40.4	207 47.3 11.5 222 49.9 11.6 237 52.5 521 11.6 252 55.1 11.6	Antores 112 47.1 526 24.9 Arcturus 146 11.2 N19 13.9 Atria 108 04.0 569 00.9
20 203 50.4 21 218 52.9 22 233 55.3 23 248 57.8 16 00 264 00.3	156 34.5 39.1 171 34.0 39.9 186 33.6 40.7 201 33.1 41.6 216 32.6 N15 42.4	192 41.5 38.0 207 42.3 • 38.7 222 43.1 39.4 237 43.9 40.1 252 44.7 N 2 40.8	96 30.1 40.4 111 31.9 40.3 126 33.8 40.2 141 35.7 40.2	267 57.7 11.7 283 00.4 ·· 11.7 298 03.0 11.7 313 05.6 11.7	Avior 234 25.7 S59 28.9 Bellatrix 278 50.9 N 6 20.6 Betelgeuse 271 20.3 N 7 24.4
01 279 02.7 02 294 05.2 03 309 07.7 04 324 10.1 05 339 12.6	216 52.6 N15 42.4 231 32.2 43.3 246 31.7 44.1 261 31.3 • 44.9 276 30.8 45.8 291 30.3 46.6	257 44.7 N 2 40.8 267 45.5 41.5 41.5 282 46.3 42.2 42.9 297 47.1 • 42.9 312 47.9 43.5 327 327 48.7 44.2	156 37.6 N22 40.1 171 39.5 40.0 186 41.3 40.0 201 43.2 39.9 216 45.1 39.9 231 47.0 39.8	328 08.2 S21 11.8 343 10.8 11.8 358 13.5 11.8 13 16.1 11.9 28 18.7 11.9 43 21.3 11.9	Conopus 264 04.4 S52 41.4 Copella 281 00.5 N45 59.4 Deneb 49 43.0 N45 14.6 Denebola 182 51.2 N14 37.5 Diphde 349 13.2 S18 02.1
06 354 15.0 07 9 17.5 S 08 24 20.0 A 09 39 22.4 T 10 54 24.9 U 11 69 27.4	306 29.9 N15 47.4 321 29.4 48.3 336 28.9 49.1 351 28.5 49.9 6 28.0 50.8 21 27.5 51.6	342 49.5 N 2 44.9 357 50.3 45.6 12 51.1 46.3 12 51.1 46.3 47.0 47.0 42 52.7 47.7 57 53.5 48.4	246 48,9 N22 39,7 261 50,7 39,7 276 52,6 39,6 291 54,5 39,6 306 56,4 39,5 321 58,3 39,4	58 23.9 521 11.9 73 26.6 12.0 88 29.2 12.0 103 31.8 ·· 12.0 118 34.4 12.1 133 37.0 12.1	Dubhe 194 12.5 N61 48.4 Elnath 278 34.8 N28 36.1 Eltonin 90 53.6 N51 29.3 Enif 34 03.9 N 9 49.8 Fomalhaut 15 42.8 S29 40.2
R 12 84 29.8 D 13 99 32.3 A 14 114 34.8 Y 15 129 37.2 16 144 39.7 17 159 42.2	36 27.0 N15 52.4 51 26.6 53.2 66 26.1 54.1 81 25.6 54.9 96 25.2 55.7 111 24.7 56.6	72 54.3 N 2 49.0 87 55.1 49.7 102 55.9 50.4 117 56.8 51.1 132 57.6 51.8 147 58.4 52.5	337 00.1 N22 39.4 352 02.0 39.3 7 03.9 39.3 22 05.8 - 39.2 37 07.7 39.1 39.1 52 09.5 39.1 39.1	133 37.0 12.1 148 39.7 521 12.1 163 42.3 12.2 178 44.9 12.2 193 47.5 • 12.2 208 50.2 12.2 208 50.2 12.2 223 52.8 12.3	Gacrux 172 20.3 S57 04.0 Gienah 176 10.1 S17 29.5 Hadar 149 12.3 S60 20.0 Hamal 328 20.5 N23 25.1 Kaus Aust. 84 06.2 S34 23.5
	126 24.2 N15 57.4 141 23.7 58.2 156 23.3 59.0 171 22.8 15 59.8 186 22.3 16 00.7 201 21.8 01.5	162 59.2 N 2 53.2 178 00.0 53.8 54.5 193 00.8 54.5 208 01.6 - 55.2 223 02.4 55.9 238 03.2 56.6	67 11.4 N22 39.0 82 13.3 38.9 97 15.2 38.9 112 17.0 ·· 38.8 127 18.9 38.8 142 20.8 38.7	238 55.4 521 12.3 253 58.0 12.3 269 00.6 12.4 284 03.3 · · 12.4	Kochab 137 18.0 N74 11.8 Markab 13 55.5 N15 09.2 Menkar 314 33.4 N 4 03.3 Menkent 148 27.8 S36 19.7 Miaplacidus 221 44.2 S69 40.9
1700 264 59.4 01 280 01.9 02 295 04.3 03 310 06.8 04 325 09.3 05 340 11.7	216 21.4 N16 02.3 231 20.9 03.1 246 20.4 04.0 261 19.9 04.8 276 19.5 05.6	253 04.0 N 2 57.3 268 04.8 58.0 283 05.6 58.6 298 06.4 2 59.3 313 07.2 3 00.0 328 08.0 00.7	157 22.7 N22 38.6 172 24.6 38.6 187 26.4 38.5 202 28.3 38.4 217 30.2 38.4 232 32.1 38.3	329 11.1 521 12.5 344 13.7 12.5 359 16.4 12.5 14 19.0 · 12.6	Mirfak 309 05.7 N49 49.6 Nunki 76 19.3 S26 18.6 Peacock 53 45.7 S56 45.8 Pollux 243 49.1 N28 03.1 Procyon 245 18.0 N 5 15.0
	306 18.5 N16 07.2 321 18.0 08.1 336 17.6 08.9 351 17.1 • 09.7 6 16.6 10.5 21 16.1 11.3	343 08.8 N 3 01.4 358 09.6 02.1 13 10.5 02.8 28 11.3 - 03.4 43 12.1 04.1 58 12.9 04.8	247 34.0 N22 38.3 262 35.8 38.2 277 37.7 38.1 292 39.6 • 38.0 307 41.5 38.0 322 43.3 38.0	59 26.9 S21 12.6 74 29.5 12.7 89 32.1 12.7 104 34.7 12.7	Rasalhague 96 22.1 N12 33.9 Regulus 208 01.9 N12 00.9 Rigel 281 29.0 S 8 12.6 Rigel 281 140 15.0 S60 48.1 Sabik 102 32.0 S15 43.0
D 12 85 29.0 A 13 100 31.4 Y 14 115 33.9 15 130 36.4 16 145 38.8	36 15.6 N16 12.1 51 15.1 13.0 66 14.7 13.8 81 14.2 14.6 96 13.7 15.4	73 13.7 N 3 05.5 88 14.5 06.2 103 15.3 06.9 118 16.1 · 07.5 133 16.9 08.2 148 17.7 08.9	337 45.2 N22 37.9 352 47.1 37.8 7 49.0 37.8 22 50.9 • 37.7 37 52.7 37.6	149 42.6 521 12.8 164 45.2 12.9 179 47.8 12.9 194 50.5 • 12.9	Schedar 350 00.7 N56 28.9 Shaula 96 44.9 S37 06.0 Sirius 258 49.3 S16 42.1 Spice 158 49.3 S11 06.9 Suhoil 223 05.5 543 23.8
18 175 43.8 19 190 46.2 20 205 48.7 21 220 51.1	126 12.7 N16 17.0 141 12.2 17.8 156 11.8 18.6 171 11.3 · 19.4	163 18.5 N 3 09.6 178 19.3 10.3 193 20.1 11.0 208 20.9 · · 11.6	67 56.5 N22 37.5 82 58.4 37.5 98 00.3 37.4 113 02.1 - 37.3	239 58.3 S21 13.0 255 01.0 13.0 270 03.6 13.1 285 06.2 • 13.1	Vega 80 50.2 N38 46.3 Zuben'ubi 137 24.3 S16 00.4 S.H.A. Mer. Pass.
				315 11.5 13.2	Venus 312 32.4 9 34 Mars 348 44.4 7 09 Jupiter 252 37.3 13 32 Saturn 64 08.0 2 07

		XC JUNE 15, 16	<u>),</u> 17			SUN	.)			121
UT (GMT)	SUN	MOON	Lat,	Nout.	light Civil	Sunrise	15	мок 16	onrise 17	18
12 03 04 05 06 07 08 F 09 F 10 12 A 13 Y 14 15 16 00 20 21 22 23 16 00 03	224 55.5 17.7 239 55.4 17.8 254 55.2 17.9 269 55.1 N23 18.1 284 55.0 18.2 299 54.8 18.3 314 54.7 18.4 329 54.6 18.5 344 54.7 18.4 329 54.6 18.5 344 54.4 18.6 359 54.3 N23 18.7 14 54.2 18.8 29 54.3 N23 18.7 14 54.2 18.8 29 54.0 18.9 44 53.9 19.0 59 53.6 19.2 89 53.5 N23 19.3 104 53.4 19.4 119 53.2 19.5 134 53.1 149 <td< td=""><td>G.H.A. v Dec. d H.P. 0 7 0 7 7 7 283 40.4 13.7 5 55 51.5 14.7 57.3 298 13.1 13.7 5 36.8 14.7 57.3 312 45.8 13.7 5 22.1 14.8 57.3 312 45.8 13.7 5 22.1 14.8 57.3 312 45.8 13.7 4 52.0 14.9 57.4 315 51.1 13.7 4 52.6 14.9 57.4 356 23.8 13.7 4 37.1 14.8 57.4 40 01.8 13.6 3 53.1 15.0 57.5 54 34.4 13.6 3 33.1 15.0 57.6 69 07.0 13.6 3 23.1 15.0 57.6 69 13.6 3 <</td><td>° N 72 N 708 664 620 N 586 642 N 586 542 50 45 N 350 N 100 N 0 120 305 445 S 5524 S 5524 S 5524 S 5524 S 5524 S 5524 S 5524 S 5524 S 5555 S 5524 S 55555 S 555555 S 555555 S 5555555 S 55555555</td><td>h m m m m m m m m m m m m m m</td><td><pre>> """ "" "" "" "" "" "" "" "" "" "" "" ""</pre></td><td>6 m 1 01 32 02 10 02 36 03 13 03 27 03 39 03 50 04 13 04 458 05 20 05 39 05 57 06 13 06 54 07 20 07 37 07 58 08 08 08 31 08 31</td><td>E 21 11:2:2:2:2:49 E 22:3 49 22:3 50 50:50 5</td><td><pre>h m 23 18 23 26 23 33 23 38 23 43 23 51 23 55 23 58 24 00 24 03 24 05 24 10 24 14 24 14 24 12 24 27 24 31 24 42 24 41 24 42 24 42 24 42 24 42 24 42 24 55 24 55 24 55 24 50 25 04 25 04 25 12 25 18</pre></td><td><pre>h m 22 39 23 14 23 27 23 37 23 47 23 37 24 01 24 08 00 03 00 05 00 10 00 14 00 14 00 14 00 14 00 27 00 31 00 36 00 41 00 05 5 00 55 00 55 00 55 00 55 00 55 01 04 01 09 01 12 01 15</pre></td><td>h m 21 22 22 14 22 47 23 11 23 31 23 46 24 00 00 08 00 13 00 08 00 13 00 08 00 33 00 42 00 49 00 55 01 06 01 16 01 26 01 35 01 45 01 57 02 04 02 21 02 32 02 37 02 43 02 49</td></td<>	G.H.A. v Dec. d H.P. 0 7 0 7 7 7 283 40.4 13.7 5 55 51.5 14.7 57.3 298 13.1 13.7 5 36.8 14.7 57.3 312 45.8 13.7 5 22.1 14.8 57.3 312 45.8 13.7 5 22.1 14.8 57.3 312 45.8 13.7 4 52.0 14.9 57.4 315 51.1 13.7 4 52.6 14.9 57.4 356 23.8 13.7 4 37.1 14.8 57.4 40 01.8 13.6 3 53.1 15.0 57.5 54 34.4 13.6 3 33.1 15.0 57.6 69 07.0 13.6 3 23.1 15.0 57.6 69 13.6 3 <	° N 72 N 708 664 620 N 586 642 N 586 542 50 45 N 350 N 100 N 0 120 305 445 S 5524 S 5524 S 5524 S 5524 S 5524 S 5524 S 5524 S 5524 S 5555 S 5524 S 55555 S 555555 S 555555 S 5555555 S 55555555	h m m m m m m m m m m m m m m	<pre>> """ "" "" "" "" "" "" "" "" "" "" "" ""</pre>	6 m 1 01 32 02 10 02 36 03 13 03 27 03 39 03 50 04 13 04 458 05 20 05 39 05 57 06 13 06 54 07 20 07 37 07 58 08 08 08 31 08 31	E 21 11:2:2:2:2:49 E 22:3 49 22:3 50 50:50 5	<pre>h m 23 18 23 26 23 33 23 38 23 43 23 51 23 55 23 58 24 00 24 03 24 05 24 10 24 14 24 14 24 12 24 27 24 31 24 42 24 41 24 42 24 42 24 42 24 42 24 42 24 55 24 55 24 55 24 50 25 04 25 04 25 12 25 18</pre>	<pre>h m 22 39 23 14 23 27 23 37 23 47 23 37 24 01 24 08 00 03 00 05 00 10 00 14 00 14 00 14 00 14 00 27 00 31 00 36 00 41 00 05 5 00 55 00 55 00 55 00 55 00 55 01 04 01 09 01 12 01 15</pre>	h m 21 22 22 14 22 47 23 11 23 31 23 46 24 00 00 08 00 13 00 08 00 13 00 08 00 33 00 42 00 49 00 55 01 06 01 16 01 26 01 35 01 45 01 57 02 04 02 21 02 32 02 37 02 43 02 49
05 06 5 08 A 09 T 10 U 11 R 12	239 52.2 20,3 254 52.0 20.4 269 51.9 20.5 284 51.8 20.6 299 51.6 20.7 314 51.5 20.8 329 51.4 20.9 34 51.2 20.9 344 51.2 20.9 359 51.1 N23 21.0	330 50.2 13.1 1 11.0 15.4 58.1 345 22.3 13.0 1 26.4 15.4 58.2 359 54.3 13.1 N 1 41.8 15.4 58.2 359 54.3 13.1 N 1 41.8 15.4 58.2 14 26.4 13.0 1 57.2 15.4 58.2 28 58.4 12.9 2 12.6 15.4 58.3 43 30.3 12.9 2 28.0 15.4 58.3 58 02.2 12.8 2 43.4 15.5 58.3 72 34.0 12.8 2 58.9 15.4 58.3 87 05.8 12.8 N 3 14.3 15.4 58.3	58 S 60 Lot. N 72 N 70	07 02 07 09 Sunset	07 54 08 06 Twili Civil	08 46 09 03 ght Novt.	23 51 23 51 15 10 43 10 48	25 21 25 25 Moc 16 12 55 12 50	01 21 01 25 mset 17 15 16 14 59	02 57 03 05 18 18 23 17 33
D 13 A 14 Y 15 16 17 18 20 21 22	14 50.9 21.1 29 50.8 21.2 44 50.7 .21.3 59 50.5 21.4 74 50.4 21.5 89 50.3 N23 21.6 104 50.1 21.6 119 119 50.0 21.7 134 49.9 .21.8	101 37.6 12.7 3 29.7 15.5 58.4 116 09.3 12.6 3 45.2 15.4 58.4 130 40.9 12.6 4 00.6 15.5 58.5 145 12.5 12.6 4 16.1 15.4 58.5 145 12.5 12.6 4 16.1 15.4 58.5 159 44.1 12.4 4 31.5 15.4 58.5 174 15.5 12.5 N 4 40.9 15.4 58.6 186 47.0 12.3 5 02.3 15.4 58.6 203 18.3 12.3 5 17.7 15.4 58.6 217 49.6 12.3 5 33.1 15.4 58.7 232 20.9 12.2 5 48.5 15.4 58.7	8888828 888888 ≥ 555888 888888 888888 888888 888888 888888	22 30 21 52 21 26 21 05 20 49 20 34 20 22 20 11	23 10 22 21 21 51 21 29 21 11 20 56	23 15 22 29 22 01	10 52 10 55 10 55 11 01 11 03 11 05 11 06 11 08 11 09 11 10	12 46 12 42 12 40 12 37 12 35 12 33 12 32 12 30 12 29 12 28	14 46 14 35 14 26 14 18 14 12 14 06 14 01 13 56 13 52 13 48	17 01 16 39 16 21 16 06 15 54 15 43 15 34 15 26 15 19 15 13
23 17 00 02 03 04 05 06 07 08 09 07 08 09 07 08 09 0 10 11	179 49.5 N23 22.0 194 49.3 22.1 209 49.2 22.2 224 49.1 . 22.3 239 48.9 22.4 254 48.8 22.4	246 52.1 12.1 6 03.9 15.4 58.7 261 23.2 12.0 N 6 19.3 15.3 58.8 275 54.2 12.0 6 34.6 15.4 58.8 290 25.2 12.0 6 50.0 15.3 58.8 304 56.2 11.8 7 05.3 15.3 58.9 319 27.0 11.8 7 25.9 15.2 58.9 333 57.8 11.7 7 35.9 15.2 58.9 348 28.5 11.6 8 0.6.4 15.2 59.0 17 29.7 11.5 8 21.6 15.2 59.0 32 00.2 11.4 8 36.8 15.1 59.0 32 00.2 11.4 8 36.8 15.1 59.0 32 00.2 11.4 8 36.8 15.1 59.0	45 N 40 35 20 N 10 S 10 30 S 10 30 35 40 45	19 49 19 31 19 16 19 03 18 41 18 22 18 04 17 47 17 28 17 07 16 55 16 41 16 24	20 26 20 04 19 45 19 30 19 05 18 45 18 27 18 10 17 52 17 34 17 23 17 11 16 58	21 16 20 45 20 22 20 04 19 35 19 12 18 53 18 36 18 36 18 03 17 55 17 45 17 35	11 13 11 15 11 17 11 18 11 21 11 23 11 26 11 28 11 30 11 33 11 34 11 36 11 38	12 25 12 23 12 21 12 19 12 16 12 14 12 11 12 09 12 06 12 04 12 02 12 00 11 58	13 40 13 33 13 28 13 23 13 14 13 06 12 59 12 52 12 52 12 36 12 31 12 26 12 19	14 59 14 47 14 38 14 29 14 15 14 02 13 51 13 39 13 27 13 12 13 04 12 55 12 44
D A Y Y 14 15 16 17 18 19 20 21 21	359 47.8 N23 23.0 14 47.7 23.0 29 47.6 23.1 44 47.7 23.2 59 47.3 23.2 74 47.2 23.3 89 47.0 N23 23.4 104 46.9 23.4 119 46.5 23.5 134 46.6 - 23.6 149 46.5 23.6	75 31.1 11.2 N 9 22.1 15.1 59.1 90 01.3 11.1 9 37.2 15.0 59.2 104 31.4 11.0 9 52.2 15.0 59.2 119 01.4 10.9 10 07.2 15.0 59.2 133 31.3 10.8 10 07.2 15.0 59.2 148 01.1 10.8 10 37.1 14.9 59.3 162 30.9 10.6 N10 52.0 14.8 59.3 177 00.5 10.6 11 06.8 14.8 59.3 177 30.1 10.4 11 21.6 14.8 59.4 205 59.5 10.4 11 36.4 14.7 59.4 220 28.9 10.3 11 36.4 14.7 59.4	S 50 52 54 56 58 S 60 Doy	16 03 15 53 15 42 15 30 15 15 14 58 Eqn. of 00 h	16 42 16 34 16 26 16 17 16 07 15 55 SUN Time 12 ^h	17 23 17 18 17 12 17 06 16 59 16 52 Mer. Pass.	11 40 11 41 11 42 11 43 11 45 11 46 Mer. Upper	11 55 11 54 11 53 11 51 11 50 11 48 MO Pass. Lower	12 12 12 08 12 04 12 00 11 55 11 50 ON Age	12 31 12 25 12 19 12 11 12 03 11 54
	164 46.3 23.7 \$.D. 15.8 d 0.1	234 58.2 10.2 12 05.7 14.6 59.5 S.D. 15.7 15.9 16.1	15 16 17	00 16 00 29 00 42	00 23 00 35 00 48	12 00 12 01 12 01	05 15 06 00 06 48	17 37 18 24 19 12	22 23 24	

xCAUGUST 23, 24, 25 (THURS., FRI., SAT.)

	ARIES	VENUS - 3.9	MARS -0.3	JUPITER - 1.9	SATURN +0.3	STARS
(GMT)	G.H.A.	G.H.A. Dec.	G.H.A. Dec.	G.H.A. Dec.	G.H.A. Dec.	Name S.H.A. Dec.
23 00 01 02 03 04 05	331 01.7 346 04.2 1 06.6 16 09.1 31 11.6 46 14.0	* * * * 197 15.5 N18 07.8 212 14.8 07.0 227 14.1 06.3 242 13.5 • 05.5 257 12.8 04.8 272 12.2 04.0	277 19.3 N17 21.8 292 20.4 22.1 307 21.5 22.5 322 22.6 · · 22.8 337 23.7 23.2 352 24.8 23.5	207 45.0 N20 13.7 222 47.0 13.6 237 48.9 13.5 252 50.8 · · 13.4 267 52.7 13.3 282 54.6 13.2	39 57.3 522 00.7 54 59.8 00.7 70 02.4 00.7 85 05.0 - 00.7 100 07.6 00.7 115 10.2 00.8	Acamar 315 31.1 S40 20.1 Achernar 335 38.8 S57 16.6 Acrux 173 29.3 563 03.1 Adhara 255 26.2 528 57.3 Aldebaran 291 09.1 N16 29.6
06 07 T 08 H 09 U 10 R 11	61 16.5 76 19.0 91 21.4 106 23.9 121 26.3 136 28.8	287 11.5 N18 03.3 302 10.8 02.5 317 10.2 01.7 332 09.5 - 01.0 347 08.9 18 00.2 2 08.2 17 59.4	7 25.9 N17 23.8 22 27.0 24.2 37 28.1 24.5 52 29.2 24.9 67 30.3 25.2 82 31.4 25.6	297 56.6 N20 13.1 312 58.5 12.9 328 00.4 12.8 343 02.3 · 12.7 358 04.2 12.6 13 06.2 12.5	130 12.8 S22 00.8 145 15.4 00.8 160 18.0 00.8 175 20.6 • 00.9 190 23.1 00.9 205 25.7 00.9	Alioth 166 35.8 N56 00.8 Alkoid 153 12.4 N49 21.7 Al Na [*] ir 28 04.5 547 00.3 Alnilam 276 03.8 S 1 12.2 Alphard 218 13.2 S 8 37.0
S 12 D 13 A 14 Y 15 16 17	151 31.3 166 33.7 181 36.2 196 38.7 211 41.1 226 43.6	17 07.5 N17 58.7 32 06.9 57.9 47 06.2 57.1 62 05.6 • 56.4 77 04.9 55.6 92 04.2 54.8	97 32.5 N17 25.9 112 33.5 26.3 127 34.6 26.6 142 35.7 • 26.9 157 36.8 27.3 172 37.9 27.6	28 08.1 N20 12.4 43 10.0 12.3 58 11.9 12.2 73 13.8 - 12.1 88 15.8 12.0 103 17.7 11.9	22028.352200.923530.900.925033.501.026536.1•<	Alphecca 126 25.4 N26 44.9 Alpheratz 358 01.0 N29 02.5 Altair 62 24.6 N 8 50.7 Ankaa 353 32.0 S42 21.1 Antares 112 47.2 S26 24.9
18 19 20 21 22 23	241 46.1 256 48.5 271 51.0 286 53.5 301 55.9 316 58.4	107 03.6 N17 54.1 122 02.9 53.3 137 02.3 52.5 152 01.6 - 51.7 167 01.0 51.0 182 00.3 50.2	187 39.0 N17 28.0 202 40.1 28.3 217 41.2 28.7 232 42.3 • 29.0 247 43.4 29.3 262 44.5 29.7	118 19.6 N20 11.7 133 21.5 11.6 148 23.5 11.5 163 25.4 • 11.4 178 27.3 11.3 193 29.2 11.2	310 43.8 522 01.0 325 46.4 01.1 340 49.0 01.1 355 51.6 - 01.1 10 54.2 01.1 25 56.8 01.1	Arcturus 146 11.4 N19 13.9 Atria 108 04.4 S69 01.1 Avior 234 25.7 S59 28.6 Bellatrix 278 50.5 N 6 20.7 Betelgeuse 271 19.9 N 7 24.5
24 00 01 02 03 04 05	332 00.8 347 03.3 2 05.8 17 08.2 32 10.7 47 13.2	196 59.7 N17 49.4 211 59.0 48.6 226 58.4 47.8 241 57.7 • 47.1 256 57.1 46.3 271 56.4 <td>277 45.6 N17 30.0 292 46.7 30.4 307 47.8 30.7 322 48.9 - 31.0 337 50.1 31.4 352 51.2 31.7</td> <td>208 31.1 N20 11.1 223 33.1 11.0 238 35.0 10.9 253 36.9 10.8 268 38.8 10.6 283 40.7 10.5</td> <td>40 59.4 522 01.2 56 02.0 01.2 71 04.5 01.2 86 07.1 - 01.2 101 09.7 01.2 116 12.3 01.3</td> <td>Canopus 264 04.0 S52 41.1 Capella 280 59.9 N45 59.3 Deneb 49 42.8 N45 14.9 Denebolo 182 51.3 N14 37.5 Diphdo 349 12.7 S18 62.0</td>	277 45.6 N17 30.0 292 46.7 30.4 307 47.8 30.7 322 48.9 - 31.0 337 50.1 31.4 352 51.2 31.7	208 31.1 N20 11.1 223 33.1 11.0 238 35.0 10.9 253 36.9 10.8 268 38.8 10.6 283 40.7 10.5	40 59.4 522 01.2 56 02.0 01.2 71 04.5 01.2 86 07.1 - 01.2 101 09.7 01.2 116 12.3 01.3	Canopus 264 04.0 S52 41.1 Capella 280 59.9 N45 59.3 Deneb 49 42.8 N45 14.9 Denebolo 182 51.3 N14 37.5 Diphdo 349 12.7 S18 62.0
06 07 08 F 09 R 10 I 11	62 15.6 77 18.1 92 20.6 107 23.0 122 25.5 137 28.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 52.3 N17 32.1 22 53.4 32.4 37 54.5 32.7 52 55.6 · 33.1 67 56.7 33.4 82 57.8 33.8	298 42.7 N20 10.4 313 44.6 10.3 328 46.5 10.2 343 48.4 10.1 358 50.4 10.0 13 52.3 09.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Dubhe 194 12.9 N61 48.2 Elnath 278 34.4 N28 36.1 Eltanin 90 53.8 N51 29.6 Enif 34 0.3.6 N 9 50.1 Fomolhaut 15 42.3 S29 40.1
D 12 A 13 Y 14 15 16 17	152 30.4 167 32.9 182 35.3 197 37.8 212 40.3 227 42.7	16 51.8 N17 40.0 31 51.2 39.2 46 50.5 38.4 61 49.9 37.6 76 49.3 36.9 91 48.6 36.1	97 58.9 N17 34.1 113 00.0 34.4 128 01.1 34.8 143 02.2 - 35.1 158 03.3 35.4 173 04.4 35.8	28 54.2 N20 09.8 43 56.1 09.7 58 58.1 09.6 74 00.0 • 09.4 89 01.9 09.3 104 03.8 09.2	221 30.4 522 01.4 236 33.0 01.4 251 35.6 01.4 266 38.1 01.5 281 40.7 01.5 296 43.3 01.5	Gacrux 172 20.7 S57 03.9 Gienah 176 10.2 S17 29.4 Hadar 149 12.8 S60 20.0 N23 25.2 Kaus Aust. 84 06.2 S34 23.5 23.5
18 19 20 21 22 23	242 45.2 257 47.7 272 50.1 287 52.6 302 55.1 317 57.5	106 48.0 N17 35.3 121 47.3 34.5 136 46.7 33.7 151 46.0 32.9 166 45.4 32.1 181 44.7 31.3	188 05.5 N17 36.1 203 06.7 36.4 218 07.8 36.8 233 08.9 - 37.1 248 10.0 37.5 36.3 263 11.1 37.8	119 05.7 N20 09.1 134 07.7 09.0 149 09.6 08.9 164 11.5 • 08.8 179 13.4 08.7 194 15.4 08.6	311 45.9 522 01.5 326 48.5 01.5 341 51.1 01.6 356 53.6 • 01.6 11 56.2 01.6 26 58.8 01.6	Kochab 137 19.2 N74 11.8 Markab 13 55.1 N15 09.4 Menkar 314 32.9 N 4 03.4 Menkent 148 28.0 S36 19.7 Miaplacidus 221 44.5 S69 40.6
25 00 01 02 03 04 05	3 04.9 18 07.4	196 44.1 N17 30.5 211 43.4 29.7 226 42.8 28.9 241 42.2 28.1 256 41.5 27.3 271 40.9 26.5	278 12.2 N17 38.1 293 13.3 38.5 308 14.4 38.8 323 15.6 - 39.1 338 16.7 39.5 353 17.8 39.8	209 17.3 N20 08.5 224 19.2 08.3 239 21.1 08.2 254 23.1 08.1 269 25.0 08.0 284 26.9 07.9	87 09.1 •• 01.7	Mirfak 309 04.9 N49 49.7 Nunki 76 19.2 S26 18.6 Peacock 53 45.3 S56 46.0 Pollux 243 48.8 N28 03.0 Procyon 245 17.8 N 5 15.1
T 10 U 11	78 17.2 93 19.7 108 22.2 123 24.6 138 27.1	286 40.2 N17 25.7 301 39.6 24.9 316 38.9 24.1 331 38.3 - 23.3 346 37.7 22.5 1 37.0 21.7	8 18.9 N17 40.1 23 20.0 40.5 38 21.1 40.8 53 22.2 41.1 68 23.4 41.5 83 24.5 41.8	299 28.8 N20 07.8 314 30.8 07.7 329 32.7 07.6 344 34.6 07.5 359 36.5 07.4 14 38.5 07.2	147 19.5 01.8 162 22.1 01.8 177 24.6 • 01.8 192 27.2 01.8 207 29.8 01.8	Rosalhague 96 22.2 N12 34.1 Regulus 208 02.0 N12 00.9 Rigel 281 28.6 S 8 12.4 Rigel 281 28.6 S 8 12.4 Rigil Kent. 140 15.5 560 48.1 Sabik 102 32.0 S15 42.9
R 12 D 13 A 14 Y 15 16 17	168 32.0 183 34.5 198 36.9 213 39.4 228 41.9	16 36.4 N17 20.9 31 35.7 20.0 46 35.1 19.2 61 34.5 + 18.4 76 33.8 17.6 91 33.2 16.8	98 25.6 N17 42.1 113 26.7 42.5 126 27.8 42.6 143 28.9 • 43.1 158 30.1 43.4 173 31.2 43.8 38.8 39.1 31.2 30.1	29 40.4 N20 07.1 44 42.3 07.0 59 44.2 06.9 74 46.2 · · · 06.8 89 48.1 06.7 104 50.0 06.6	237 35.0 01.9 252 37.5 01.9 267 40.1 01.9 282 42.7 01.9 297 45.3 02.0	Schedar 349 59.9 N56 29.2 Shaula 96 45.0 S37 06.0 Sirius 258 49.0 S16 41.9 Spica 158 49.5 S11 06.8 Suhail 223 05.6 S43 23.5
18 19 20 21 22 23	258 46.8 273 49.3 288 51.7 303 54.2 318 56.7	106 32.6 N17 16.0 121 31.9 15.2 136 31.3 14.4 151 30.6 13.5 166 30.0 12.7 181 29.4 11.9	188 32.3 N17 44.1 203 33.4 44.4 218 34.6 44.8 233 35.7 - 45.1 248 36.8 45.4 263 37.9 45.8	119 51.9 N20 06.5 134 53.9 06.4 149 55.8 06.3 164 57.7 06.2 179 59.7 06.0 195 01.6 05.9	327 50.4 02.0 342 53.0 02.0 357 55.6 • 02.0 12 58.7 02.1	Vega 80 50.3 N38 46.6 Zuben'ubi 137 24.5 S16 00.3 S.H.A. Mor. Pass. * * Venus 224 58.8 10 52 Mars 305 44.8 5 29
Mer. Pa	s. 1 51.6	v = 0.6 d = 0.8	v 1.1 d 0.3	v 1.9 d 0.1	v 2.6 d 0.0	Jupiter 236 30.3 10 05 Saturn 68 58.5 21 12

166

	<u>CUNI</u>			Twili	ght	•		Mog	mrise	107
UT (GMT)	SUN	MOON	Lat.	Nout.	Civil	Sunrise	23	24	25	26
d h	G.H.A. Dec.	G.H.A. v Dec. d H.P.	N 72	ի տ ///	b m 01 10	03 18	h m 09 22	h m 11 33	h m 14 31	h a
23 ⁰⁰		152 49.4 14.8 S 3 45.7 14.4 56.2	N 70 68	HH HH	02 06 02 39	03 38 03 54	09 13 09 05	11 11 10 54	13 27 12 52	15 25
02 03	209 18.3 34.6	181 57.0 14.8 4 14.4 14.3 56.2	66 64	01 01	03 02	04 07	08 59	10 41	12 27	14 25
04	239 18.6 32.9	211 04.7 14.8 4 43.0 14.2 56.1	62	01 51 02 20	03 20	04 18 04 27	08 54	10 30 10 20	12 08	13 51 13 26
05 06		225 38.5 14.8 4 57.2 14.2 56.1 240 12.3 14.9 S 5 11.4 14.1 56.1	60 N 58	02 42 02 59	03 47 03 58	04 35 04 42	08 46 08 42	10 12 10 05	11 39 11 28	13 07 12 51
07 T 08	299 19.2 29.5	254 46.2 14.9 5 25.5 14.1 56.0 269 20.1 14.8 5 39.6 14.1 56.0	56 54	03 13 03 25	04 07 04 15	04 48 04 53	08 39 08 37	09 59 09 54	11 18 11 10	12 37 12 26
Н 09 U 10	314 19.4 . 28.7 329 19.5 27.9	283 53.9 14.9 5 53.7 14.1 56.0 298 27.8 14.9 6 07.8 14.0 55.9	52 50	03 36 03 45	04 21 04 28	04 58	08 34 08 32	09 49 09 44	11 02 10 56	12 15 12 06
R 11 S 12	344 19.7 27.0 359 19.9 N11 26.2	1 1	45 N 40	04 03 04 17	04 41 04 51	05 12 05 20	08 27 08 23	09 35 09 27	10 41 10 29	11 47 11 32
D 13	14 20.0 25.3 29 20.2 24.5	342 09.5 14.8 6 49.6 13.9 55.9	35 30	04 29 04 38	05 00 05 08	05 26 05 32	08 20 08 17	09 20 09 14	10 19 10 10	11 18 11 07
Y 15 16	44 20.4 . 23.6	11 17.2 14.9 7 17.3 13.8 55.8	20 N 10	04 53 05 05	05 20 05 30	05 42 05 51	08 12 08 07	09 04 08 55	09 55 09 42	10 48 10 31
17	74 20.7 21.9	40 25.0 14.9 7 44.9 13.7 55.8	0	05 14	05 38	05 59	08 03	08 46	09 30	10 15
18 19	89 20.8 N11 21.1 104 21.0 20.2	69 32.7 14.9 8 12.2 13.6 55.7	S 10 20	05 21 05 27	05 46 05 53	06 07 06 15	07 59 07 55	08 38	09 18 09 05	10 00 09 43
20 21	119 21.2 19.4 134 21.3 18.5	98 40.5 14.8 8 39.4 13.5 55.7	30 35	05 32 05 35	06 00	06 25 06 30	07 50 07 47	08 19 08 14	08 51 08 42	09 24 09 13
22 23	149 21.5 17.7 164 21.7 16.8	127 48.2 14.8 9 06.3 13.4 55.6	40 45	05 37 05 39	06 09 06 13	06 36 06 43	07 44 07 40	08 07 08 00	08 33 08 21	09 01 08 46
24 ⁰⁰	179 21.8 N11 16.0 194 22.0 15.1	156 55.9 14.8 9 33.1 13.3 55.6	\$ 50 52	05 41 05 42	06 18 06 21	06 51 06 55	07 36 07 34	07 51 07 47	08 08 08 08	08 28 08 20
03	209 22.2 14.3 224 22.3 13.4	171 29.7 14.8 9 46.4 13.2 55.5 186 03.5 14.8 9 59.6 13.2 55.5	54 56	05 42 05 43	06 23 06 26	07 00 07 04	07 32 07 30	07 43 07 38	07 55 07 47	08 10 08 00
	239 22.5 12.5 254 22.7 11.7		58 S 60	05 43 05 44	06 29 06 32	07 09 07 15	07 27 07 24 .	07 32 07 26	07 39 07 29	07 48
06 07	269 22.8 N11 10.8 284 23.0 10.0		Lat.	c	Twil	i gh t			inset	<u> </u>
08 F 09	299 23.2 09.1 314 23.3 08.3	258 52.4 14.7 11 05.1 12.9 55.4		Sunset	Civil	Naut.	23	24	25	26
	329 23.5 07.4 344 23.7 06.6		N 72	h m 20 43	22 42	h m ∭	h m 18 35	17 56	^ т 1631	6 m
D 12	359 23.8 N11 05.7 14 24.0 04.9	317 07.2 14.7 511 56.4 12.7 55.3	N 70 68	20 23	21 52 21 21	/// ///	18 47 18 57	18 20 18 38	17 36	17 15
Y 14 15	29 24.2 04.0		66 64	19 55 19 45	20 59 20 42	22 ⁷⁷ 53 22 09	19 05 19 12	18 53 19 06	18 39 18 59	18 16 18 50
16 17	59 24.5 02.3 74 24.7 01.4		62 69	19 36 19 28	20 27 20 15	21 41 21 20	19 18 19 23	19 16 19 26	19 15 19 29	19 16 19 36
18	89 24.8 N11 00.6	44 28.9 14.5 S13 11.5 12.3 55.2	N 58	19 22	20 05	21 03	19 28	19 34	19 41	19 52
	104 25.0 10 59.7 119 25.2 58.9		56 57 57	19 16 19 10	19 57 19 49	20 49 20 38	19 32 19 36	19 41 19 47	19 51 20 01	20 06 20 18
21 22	134 25.3 58.0 149 25.5 57.1	102 42.8 14.5 14 00.3 12.1 55.1	52 50	19 06 19 01	19 42 19 36	20 28 20 19	19 39 19 42	19 53	20 09	20 29 20 39
23 25 00	164 25.7 56.3 179 25.8 N10 55.4		45 N 40	18 52 18 44	19 23 19 13	20 01 19 47	19 49 19 54	20 09 20 19	20 32	20 59 21 15
	174 20.0 34.0	146 23.0 14.4 14 36.3 11.8 55.0 160 56.4 14.3 14 48.1 11.7 55.0	35 30	18 38 18 32	19 04 18 57	19 35 19 26	19 59 20 03	20 27 20 34	20 56 21 06	21 29 21 42
		175 29.7 14.3 14 59.8 11.7 55.0 190 03.0 14.2 15 11.5 11.6 55.0	20 N 10	18 22 18 14	18 45 18 35	19 11 19 00	20 11 20 18	20 46 20 57	21 23 21 38	22 02 22 21
	254 26.7 51.1 269 26.9 N10 50.3	204 36.2 14.2 15 23.1 11.6 55.0 219 09.4 14.2 S15 34.7 11.5 54.9	0 S 10	18 06 17 58	18 27 18 19	18 51 18 44	20 24 20 30	21 07 21 17	21 52 22 06	22 38
07	284 27.0 49.4	233 42.6 14.2 15 46.2 11.3 54.9 248 15.8 14.1 15 57.5 11.4 54.9	20 30	17 50 17 40	18 12 18 05	18 38 18 33	20 37 20 44	21 28 21 41	22 20 22 38	23 13 23 34
A 09	314 27.4 47.7	262 48.9 14.1 16 08.9 11.2 54.9 277 22.0 14.0 16 20.1 11.2 54.9	35 40	17 35 17 29	18 01 17 57	18 30 18 28	20 49 20 54	21 48 21 57	22 48 22 59	23 47 24 01
v 11	344 27.7 46.0	291 55.0 14.1 16 31.3 11.1 54.8	45 \$50	17 22 17 14	17 52 17 47	18 26 18 25	21 00	22 07 22 19	23 13 23 30	24 18 24 40
P 13		321 01.0 14.0 16 53.4 10.9 54.8	52	17 10	17 45	18 24	21 10	22 24	23 38	24 50
Y 15	44 28.4 42.5	350 06.9 13.9 17 15.2 10.8 54.8	54 56	17 06 17 02	17 42 17 40	18 24 18 23	21 14 21 18	22 30 22 37	23 46 23 56	25 01 25 14
16 17	59 28.6 41.6 74 28.7 40.8	19 12.6 13.8 17 36.7 10.6 54.7	58 S 60	16 56 16 51	17 37 17 34	18 23 18 22	21 22 21 27	22 45 22 54	24 08 24 21	00 08 00 21
18 19	89 28.9 N10 39.9 104 29.1 39.0	48 18.1 13.8 17 57.8 10.5 54.7		Eqn. of	SUN	Mer.	Mer.	-		
21	134 29.4 37.3	77 23.5 13.7 18 18.6 10.3 54.7	Day	00 *	12 ^h	Pass.	Upper	Lower	-	Phase
22 23	149 29.6 36.5 164 29.8 35.6		23	02 49	02 41 02 25	12 03	ь т 14 14	01 52	03	
	S.D. 15.8 d 0.9	5.D. 15.2 15.1 14.9	24 25	02 33 02 17	02 25 02 09	12 02 12 02	14 57 15 41	02 35 03 19	04 05	
		·								

XC OCTOBER 13, 14, 15 (SAT., SUN., MON.)

<u> </u>		τ, ια Γ	· · · · ·	., 001	.,		Maa		201
UT SUN	MOON	Lat.	Twili Naut.	Civil	Sunrise	13	14	nrise 15	16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 333 18.7 11.5 N15 02.0 12.6 57.5 1 347 49.2 11.7 14 49.4 12.7 57.5 0 2 19.9 11.7 14 36.7 12.8 57.4 0 16 50.6 11.8 14 23.9 12.8 57.4 9 31 21.4 11.8 14 23.9 12.8 57.4 9 31 21.4 11.8 14 11.1 12.9 57.4 9 45 52.2 12.0 13 58.2 12.9 57.4 8 60 23.2 12.0 N13 45.3 13.0 57.4 7 74 54.2 12.2 13 13.1 57.3 60 23.2 12.0 N13 45.3 13.0 57.4 6103 56.6 12.3 13.0 13.1 57.3 5 132	N 72 N 70 68 64 64 64 64 64 64 64 64 64 64 64 64 64	Naur. h m 04 49 04 57 05 00 05 03 05 04 05 07 05 08 05 09 05 10 05 10 05 10 05 10 05 10 05 10 05 10 05 10 05 07 05 03 04 51 04 42 04 21 04 21 04 42 04 31 04 14	Civil * * * 06 05 06 02 06 02 06 02 05 57 05 54 05 55 05 55 05 55 05 54 05 47 05 44 05 44 05 37 05 32 05 37 05 53 05 50 05 54 05 50 05 44 05 37 05 22 05 51 05 50 05 32 05 52 05 54 05 44 05 37 05 52 05 32 05 32 05 44 05 37 05 54 05 32 05 44 05 37 05 54 05 54 05 55 05 44 05 55 05 54 05 55 05 44 05 55 05 56 05 54 05 55 05 54 05 55 05 54 05 55 05 54 05 54 05 54 05 54 05 54 05 54 05 54 05 55 05 55 05 55 05 55 05 54 05 55 05 54 05 55 05 54 05 55 05 54 05 55 05 54 05 55 05 54 05	<pre>^ m m 07 187 06 59 06 52 06 461 06 36 06 32 06 28 06 28 06 28 06 22 06 20 06 14 06 05 06 01 05 54 05 43 05 54 05 37 05 31 05 23 05 14</pre>	15 h m 23 54 24 14 24 29 24 41 25 07 25 13 25 19 00 01 00 29 00 15 00 29 00 41 00 59 01 14 01 27 01 39 01 51 02 03 02 18 02 26 02 35	14 h m 26 08 00 14 00 29 00 41 00 51 01 07 01 13 01 19 01 24 01 42 01 42 01 45 02 01 02 10 02 10 02 26 02 34 02 42 02 52 03 03	Image: 1000 cm Image:	n h m 8 04 10 5 04 08 1 04 07 6 04 05 0 04 05 3 04 04 5 04 03 9 04 02 2 04 02 2 04 02 4 04 01 5 04 02 4 04 01 5 03 58 7 03 58 0 03 55 1 03 55 1 03 53 6 03 53 3 03 52 5 03 51
23 168 27.2 57 1400 183 27.3 5 7 58 01 198 27.5 58 58 52 51 50 52 53 52 52 53 52 52 52 53 52 52 53 54 53	1 220 08.9 12.9 11 19.5 13.5 57.1 0 234 40.8 13.0 N11 06.0 13.6 57.1 9 249 12.8 13.0 N11 06.0 13.6 57.0 9 263 44.8 13.1 10 38.8 13.7 57.0 8 278 16.9 13.1 10 38.8 13.7 57.0 7 292 49.0 13.2 10 11.5 13.6 57.0 7 292 49.0 13.2 10 11.5 13.8 57.0 6 307 21.2 13.3 9 57.7 13.7 57.0	45 \$ 50 52 54 56 58 \$ 60	04 02 03 48 03 40 03 32 03 23 03 12 03 00	04 39 04 28 04 24 04 18 04 12 04 06 03 58	05 09 05 02 04 59 04 55 04 52 04 47 04 43	02 47 03 00 03 06 03 13 03 20 03 29 03 38	03 10 03 19 03 22 03 27 03 31 03 36 03 42	03 3 03 3 03 3 03 3 03 4 03 4 03 4	03 50 5 03 49 5 03 49 6 03 49 03 49 03 49 03 49 03 48 2 03 48
	6 321 53.5 13.3 N 9 44.0 13.8 56.9 5 336 25.8 13.4 9 30.2 13.8 56.9 4 350 58.2 13.5 9 16.4 13.9 56.9	Lat.	Sunset	Twili Civil	ight Naut.	13	моо 14	inset 15	16
02 213 31.1 22 03 228 31.2 23 04 243 31.4 24	4 5 30.7 13.5 9 02.5 13.9 56.9 3 20 03.2 13.6 8 48.6 13.9 56.8 2 34 35.8 13.7 8 34.7 13.9 56.8 2 49 08.5 13.7 N 8 0.6.8 14.0 56.8 2 49 08.5 13.7 N 8 0.6.8 14.0 56.8 63 41.2 13.7 N 8 0.6.8 14.0 56.8 0 78 13.9 13.8 7 52.8 14.0 56.8 0 92 46.7 13.9 7 24.7 14.0 56.7 9 107 19.6 13.9 7 24.7 14.0 56.7 121 52.5 13.9 7 10.7 14.1 56.7 7 150 58.5 14.0 6 28.3 14.1 56.6 165 31.5 14.1 6 28.3 14.1	°72 768664228 88664228 88664228 8866428 N 555554 495582010 0 N 382010 0 N 382000 N 382000 N 382000 N 3820000 N 3820000 N 382000000000000000000000000000000000000	h m 16 12 16 23 16 32 16 39 16 45 16 50 16 55 17 03 17 06 17 12 17 18 17 23 17 31 17 38 17 49	h m 17 22 17 26 17 28 17 31 17 33 17 35 17 37 17 40 17 42 17 44 17 47 17 50 17 52 17 55 18 00 18 05 18 10	<pre>h m 18 36 18 33 18 30 18 28 18 26 18 25 18 24 18 23 18 22 18 21 18 21 18 21 18 21 18 21 18 21 18 22 18 22 18 22 18 21 18 21 18 21 18 22 18 23 18 25 18 29 18 35</pre>	<pre>h m 17 01 16 39 16 22 16 08 15 57 15 38 15 31 15 24 15 18 15 13 15 03 14 57 14 48 14 41 14 22 14 02</pre>	h m 16 23 16 13 16 04 15 57 15 51 15 46 15 38 15 34 15 31 15 28 15 19 15 14 15 10 15 06 14 54 14 48	h 15 55 15 54 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 45 15 34 15 34 15 35 15 35 15 35 15 35 15 35 15 35 15 35 15 35 15 35 15 35 15 35 15 35 15 35 15 35 15 35 15 35 15 35 15 35	3 15 25 1 15 30 3 15 35 3 15 38 5 15 41 5 15 44 4 15 46 3 15 51 2 15 52 1 15 55 3 16 01 7 16 03 5 16 05 5 16 09 3 16 12
07 288 31.8 26 08 303 31.9 27 M 09 318 32.1 28 0 10 333 32.2 29 N 111 348 32.3 30 D 12 3 32.5 5 8 31 A 13 18 32.6 32 Y 14 33 32.8 33 15 48 32.9 34 16 63 33.0 35 17 78 33.2 36 18 93 33.3 5 8 37	5 23 52.5 14.7 2 54.9 14.3 56.3 4 38 26.2 14.8 N 2 40.6 14.3 56.3 4 53 00.0 14.7 2 26.3 14.3 56.3 3 67 33.7 14.8 2 12.0 14.3 56.2 2 82 07.5 14.8 1 57.7 14.3 56.2	\$ 10 35 44 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	17 55 18 02 18 09 18 13 18 18 18 24 18 31 18 34 18 34 18 38 18 42 18 46 18 51	18 17 18 24 18 33 18 39 18 46 18 55 19 05 19 10 19 15 19 21 19 28 19 36 SUN	18 41 18 50 19 02 19 10 19 19 19 31 19 46 19 53 20 02 20 02 20 11 20 22 20 35	13 52 13 41 13 29 13 14 13 04 12 52 12 47 12 34 12 241 12 34 12 27 12 18	14 42 14 36 14 29 14 25 14 21 14 15 14 09 14 06 14 02 13 59 13 55 13 50 MO	15 3 15 2 15 2 15 2 15 2 15 2 15 2 15 2 15 2	7 16 21 7 16 24 7 16 26 5 16 29 4 16 31 3 16 35 2 16 36 1 16 38 0 16 40 9 16 42
20 123 33.6 38 21 138 33.7 . 39 22 153 33.9 40	8 154 56.8 14.9 0 46.3 14.2 56.1 8 169 30.7 15.0 0 32.1 14.3 56.1 7 184 04.7 14.9 0 17.8 14.2 56.1 6 198 38.6 15.0 0 03.6 14.3 56.0	Day 13 14	Eqn. of 00 h 13 35 13 49	Time 12 ^h 13 42 13 56	Mer. Pass. 11 46 11 46	Mer. Upper 6 m 07 50 08 37	Pass. Lower 20 14 21 00	Age 24 25	Phose
S.D. 16.1 d (9 S.D. 15.6 15.5 15.3	15	14 03	14 10	11 46	09 22	21 43	26	

				, ,		•
UT	ARIES	VENUS -3.9	MARS -1.3	JUPITER -2.1	SATURN +0.5	STARS
(GMT)	G.H.A.	G.H.A. Dec.	G.H.A. Dec.	G.H.A. Dec.	G.H.A. Dec.	Name S.H.A. Dac.
1600	24 15.2	187 04.0 S 5 54.4	311 06.6 N21 56.2	251 12.1 N18 01.2	93 32.0 S22 07.9	Acamar 315 30.7 \$40 20.2
10 01	39 17.7	202 03.6 55.6	326 08.9 56.3	266 14.3 01.1	108 34.4 07.9	Achemar 335 38.5 S57 16.8
02	54 20.1	217 03.1 56.9	341 11.2 56.4	281 15.4 01.0	123 36.7 07.8	Acrux 173 29.3 \$63 02.8
03	69 22.6	232 02.7 · · 58.1	356 13.5 · · 56.5	296 18.5 · · 00.9	138 39.1 · · 07.8	Adhara 255 25.8 S28 57.2
04 05	84 25.1 99 27.5	247 02.3 5 59.3 262 01.9 6 00.6	11 15.8 56.6 26 18.1 56.7	311 20.7 00.9 326 22.8 00.8	153 41.4 07.8 168 43.8 07.8	Aldebaran 291 08.7 N16 29.7
06	114 30.0	277 01.4 S 6 01.8	41 20.4 N21 56.8	341 24.9 N18 00.7	183 46.2 522 07.8	Alioth 166 35.9 N56 00.5
07	129 32.5	292 01.0 03.0	56 22.7 57.0	356 27.1 00.6	198 48.5 07.8	Alkaid 153 12.6 N49 21.5
T 08	144 34.9	307 00.6 04.3	71 25.0 57.1	11 29.2 00.5	213 50.9 07.8	Al Na'ir 28 04.5 547 00.4
U 09	159 37.4	322 00.1 • • 05.5	86 27.3 · · 57.2	26 31.3 · · 00.5	228 53.3 · · 07.8	Alnilom 276 03.4 \$ 1 12.2
E 10 S 11	174 39.9 189 42.3	336 59.7 06.7 351 59.3 07.9	101 29.6 57.3 116 31.9 57.4	41 33.5 00.4 56 35.6 00.3	243 55.6 07.8 258 58.0 07.8	Alphard 218 12.9 S 8 37.0
D 12	204 44.8	6 58.9 5 6 09.2	131 34.2 N21 57.5	71 37.8 N18 00.2	274 00.3 S22 07.7	Alphecca 126 25.7 N26 44.8
A 13	219 47.2	21 58.4 10.4	146 36.5 57.6	86 39.9 00.1	289 02.7 07.7	Alpheratz 358 00.9 N29 02.6
Y 14	234 49.7	36 58.0 11.6	161 38.8 57.8	101 42.0 00.0	304 05.1 07.7	Altair 62 24.8 N 8 50.7
15 16	249 52.2	51 57.6 · · 12.8 66 57.1 14.1	176 41.1 · · 57.9 191 43.5 58.0	116 44.2 18 00.0 131 46.3 17 59.9	319 07.4 · · 07.7 334 09.8 07.7	Ankaa 353 31.9 542 21.2 Antares 112 47.4 526 24.8
17	279 57.1	81 56.7 15.3	206 45.8 58.1	146 48.4 59.8	349 12.2 07.7	Millures 112 47.4 520 24.0
18	294 59.6	96 56.3 S 6 16.5	221 48.1 N21 58.2	161 50.6 N17 59.7	4 14.5 S22 07.7	Arcturus 146 11.5 N19 13.8
19	310 02.0	111 55.8 17.7	236 50.4 58.3	176 52.7 59.6	19 16.9 07.7	Atria 108 05.0 569 01.0
20 21	325 04.5	126 55.4 19.0 141 55.0 • • 20.2	251 52.7 58.4 266 55.1 • 58.6	191 54.9 59.6 206 57.0 · · 59.5	34 19.2 07.7 49 21.6 · · 07.6	Avior 234 25.2 559 28.4 Bellatrix 278 50.1 N 6 20.7
22	340 07.0 355 09.4	141 55.0 - 20.2	281 57.4 58.7	206 57.0 - 59.5	49 21.6 · · 07.6 64 24.0 07.6	Bellatrix 278 50.1 N 6 20.7 Betelgeuse 271 19.5 N 7 24.5
23	10 11.9	171 54.1 22.6	296 59.7 58.8	237 01.3 59.3	79 26.3 07.6	· · · · · · · · · · · · · · · · · · ·
17 00	25 14.4	186 53.7 S 6 23.9	312 02.0 N21 58.9	252 03.4 N17 59.2	94 28.7 \$22 07.6	Canopus 264 03.5 552 41.0
	40 16.8	201 53.2 25.1	327 04.4 59.0	267 05.6 59.2	109 31.0 07.6	Capella 280 59.3 N45 59.4
02 03	55 19.3 70 21.7	216 52.8 26.3 231 52.4 · · 27.5	342 06.7 59.1 357 09.0 · · 59.2	282 07.7 59.1 297 09.8 · · 59.0	124 33.4 07.6 139 35.8 · 07.6	Deneb 49 43.0 N45 15.1 Denebala 182 51.2 N14 37.4
04	85 24.2	246 51.9 28.8	12 11.4 59.4	312 12.0 58.9	154 38.1 07.6	Diphdo 349 12.5 S18 02.0
05	100 26.7	261 51.5 30.0	27 13.7 59.5	327 14.1 58.9	169 40.5 07.6	,
06	115 29.1	276 51.1 5 6 31.2	42 16.0 N21 59.6	342 16.3 N17 58.8	184 42.8 S22 07.6	Dubhe 194 12.6 N61 47.9
W 07 E 08	130 31.6	291 50.6 32.4	57 18.4 59.7 72 20.7 59.8	357 18.4 58.7 12 20.6 58.6	199 45.2 07.5 214 47.6 07.5	Elnath 278 33.9 N28 36.1
E 08 D 09	145 34.1 160 36.5	306 50.2 33.7 321 49.8 · · 34.9	72 20.7 59.8	12 20.6 58.6 27 22.7 • 58.5	214 47.6 07.5 229 49.9 · · 07.5	Eltanin 90 54.3 N51 29.6 Enif 34 03.7 N 9 50.1
N 10	175 39.0	336 49.3 36.1	102 25.4 22 00.0	42 24.8 58.5	244 52.3 07.5	Fomalhaut 15 42.3 S29 40.2
E 11	190 41.5	351 48.9 37.3	117 27.7 00.1	57 27.0 58.4	259 54.6 07.5	
\$ 12 D 13	205 43.9	6 48.5 5 6 38.6	132 30.1 N22 00.3	72 29.1 N17 58.3	274 57.0 S22 07.5	Gacrux 172 20.7 557 03.6
D 13 A 14	220 46.4	21 48.0 39.8 36 47.6 41.0	147 32.4 00.4 162 34.8 00.5	87 31.3 58.2 102 33.4 58.1	289 59.3 07.5 305 01.7 07.5	Gienoh 176 10.2 517 29.4 Hadar 149 13.0 560 19.8
Y 15	250 51.3	51 47.2 · · 42.2	177 37.1 · · 00.6	117 35.6 - 58.1	320 04.1 · · 07.5	Hamal 328 19.7 N23 25.4
16	265 53.8	66 46.7 43.4	192 39.5 00.7	132 37.7 58.0	335 06.4 07.4	Kaus Aust. 84 06.4 534 23.5
17	280 56.2	81 46.3 44.7	207 41.9 00.8	147 39.8 57.9	350 08.8 07.4	
18 19	295 58.7 311 01.2	96 45.8 S 6 45.9 111 45.4 47.1	222 44.2 N22 00.9 237 46.6 01.0	162 42.0 N17 57.8 177 44.1 57.7	5 11.1 S22 07.4 20 13.5 07.4	Kochab 137 20.0 N74 11.6 Markab 13 55.1 N15 09.6
20	326 03.6	126 45.0 48.3	252 48.9 01.1	192 46.3 57.7	35 15.8 07.4	Menkar 314 32.5 N 4 03.5
21	341 06.1	141 44.5 • • 49.5	267 51.3 · · 01.3	207 48.4 · · 57.6	50 18.2 · · 07.4	Menkent 148 28.1 \$36 19.5
22 23	356 08.6	156 44.1 50.8 171 43.7 52.0	282 53.7 01.4 297 56.0 01.5	222 50.6 57.5 237 52.7 57.4	65 20.6 07.4 80 22.9 07.4	Miaplacidus 221 43.9 569 40.4
1800	26 13.5	186 43.2 S 6 53.2	312 58.4 N22 01.6	237 52.7 57.4 252 54.9 N17 57.4	95 25.3 S22 07.4	Mirfak 309 04.4 N49 49.8
10 01	41 16.0	201 42.8 54.4	328 00.8 01.7	267 57.0 57.3	110 27.6 07.3	Nunki 76 19.4 \$26 18.6
02	56 18.4	216 42.3 55.6	343 03.1 01.8	282 59.2 57.2		Peacock 53 45.6 \$56 46.1
03 04	71 20.9 86 23.3	231 41.9 · · 56.9 246 41.5 58.1	358 05.5 · · 01.9 13 07.9 02.0	298 01.3 · · 57.1 313 03.4 57.0	140 32.3 · · 07.3 155 34.7 07.3	Pollux 243 48.4 N28 02.9 Procyon 245 17.5 N 5 15.1
05		261 41.0 6 59.3	28 10.2 02.1	328 05.6 57.0	170 37.0 07.3	245 17.5 R 5 15.1
06		276 40.6 S 7 00.5	43 12.6 N22 02.3	343 07.7 N17 56.9	185 39.4 S22 07.3	Rasaihague 96 22.4 N12 34.1
07	131 30.7	291 40.1 01.7	58 15.0 02.4	358 09.9 56.8	200 41.8 07.3	Regulus 208 01.7 N12 00.8
	146 33.2	306 39.7 02.9 321 39.3 · 04.2	73 17.4 02.5	13 12.0 56.7		Rigel 281 28.2 S 8 12.4 Rigil Kent. 140 15.8 S60 47.9
	161 35.7	321 39.3 - · 04.2 336 38.8 05.4	88 19.8 · · 02.6 103 22.1 02.7	28 14.2 · · 56.6 43 16.3 56.6	245 48.8 07.2	Sabik 102 32.3 S15 42.9
R 11	191 40.6	351 38.4 06.6	118 24.5 02.8	58 18.5 56.5	260 51.2 07.2	
\$ 12	206 43.1	6 37.9 S 7 07.8	133 26.9 N22 02.9	73 20.6 N17 56.4	275 53.5 522 07.2	
D 13	221 45.5	21 37.5 09.0	148 29.3 03.0	88 22.8 56.3		Shaula 96 45.2 \$37 06.0
	236 48.0 251 50.5	36 37.0 10.2 51 36.6 • • 11.4	163 31.7 03.1 178 34.1 · · 03.2	103 24.9 56.3 118 27.1 · · 56.2		Sirius 258 48.6 S16 41.9 Spica 158 49.5 S11 06.8
16	266 52.9	66 36.2 12.7	193 36.5 03.3	133 29.2 56.1	336 02.9 07.2	Subail 223 05.2 \$43 23.4
17	281 55.4	81 35.7 13.9	208 38.9 03.5	148 31.4 56.0	351 05.3 07.2	
18	296 57.8	96 35.3 S 7 15.1	223 41.3 N22 03.6	163 33.5 N17 56.0	6 07.6 S22 07.1	
19 20		111 34.8 16.3 126 34.4 17.5	238 43.6 03.7 253 46.0 03.8	178 35.7 55.9 193 37.8 55.8	21 10.0 07.1 36 12.3 07.1	Zuben'ubi 137 24.6 516 00.3
20	342 05.2	141 33.9 · · 18.7	268 48.4 · · 03.9	208 40.0 · · 55.7	51 14.7 · · 07.1	S.H.A. Mer. Pass. o / h m
22	357 07.7	156 33.5 19.9	283 50.8 04.0	223 42.1 55.6	66 17.1 07.1	Venus 161 39.3 11 33
23	12 10.2	171 33.1 21.2	298 53.3 04.1	238 44.3 55.6	81 19.4 07.1	Mars 286 47.7 3 11 Jupiter 226 49.1 7 11
Mar. Po	ss. 22 15.4	v - 0.4 d 1.2	v 2.3 d 0.1	v 2.1 d 0.1	v 2.4 đ 0.0	Jupiter 226 49.1 7 11 Saturn 69 14.3 17 39
			1	1		

								•	
UT	ARIES	VENUS	-3.9	MARS	- 1.5	JUPITER -2.4	SATURN +0.6	5	STARS
(GMT)	G.H.A.	G.H.A.	Dec.	G.H.A.	Dec.	G.H.A. Dec.	G.H.A. Dec.	Name	S.H.A. Dec.
1500	83 23.6	169 40.9 5	S24 09.9	26 13.1	N22 08.1	307 30.2 N17 26.6	147 44.6 521 28.5	Acamor	315 30.7 S40 20.5
01	98 26.0	184 40.0	09.9	41 16.2	08.0	322 32.8 26.7	162 46.8 28.4	Achernar	335 38.7 S57 17.1
02 03	113 28.5	199 39.0 214 38.0	09.9	56 19.3	07.9	337 35.4 26.7	177 48.9 28.4	Acrux	173 28.6 S63 02.7
04	128 31.0 143 33.4	214 38.0	· · 09.9 09.9	71 22.4 86 25.5	··· 07.9 07.8	352 38.0 · · 26.8 7 40.5 26.8	192 51.1 · · 28.4 207 53.3 28.3	Adhara Aldebaran	255 25.4 S28 57.5 291 08.4 N16 29.6
05	158 35.9	244 36.0	09.9	101 28.6	07.8	22 43.1 26.9	222 55.5 28.3		
06	173 38.3	259 35.1 5		116 31.7		37 45.7 N17 26.9	237 57.7 S21 28.2	Alioth	166 35.4 N56 00.2
07 S 08	188 40.8 203 43.3	274 34.1 289 33.1	09.9 09.9	131 34.8 146 37.9	07.6 07.6	52 48.3 26.9 67 50.9 27.0	252 59.8 28.2 268 02.0 28.1	Alkaid Al No'ir	153 12.3 N49 21.2 28 04.9 S47 00.5
A 09	218 45.7	304 32.1	• • 09.9	161 41.0	·· 07.5	82 53.5 · · 27.0	283 04.2 · · 28.1	Alnilam	276 03.1 S 1 12.3
T 10 U 11	233 48.2 248 50.7	319 31.1 334 30.2	09.9 09.9	176 44.1	07.4 07.4	97 56.1 27.1 112 58.6 27.1	298 06.4 28.1 313 08.5 28.0	Alphard	218 12.5 S 8 37.1
R 12	263 53.1	349 29.2 5		206 50.2		128 01.2 N17 27.2	328 10.7 S21 28.0	Alphecca	126 25.6 N26 44.5
D 13 A 14	278 55.6	4 28.2	09.9	221 53.3	07.2	143 03.8 27.2	343 12.9 27.9	Alpheratz	358 01.0 N29 02.7
A 14 Y 15	293 58.1 309 00.5	19 27.2 34 26.3	09.9	236 56.4	07.2	158 06.4 27.3 173 09.0 · · 27.3	358 15.1 27.9 13 17.3 · · 27.8	Altair Ankaa	62 25.0 N 8 50.7 353 32.1 \$42 21.4
16	324 03.0	49 25.3	09.9	267 02.6	07.0	188 11.6 27.3	28 19.4 27.8	Antares	112 47.3 526 24.8
17	339 05.4	64 24.3	09.9	282 05.7	07.0	203 14.2 27.4	43 21.6 27.7		
18 19	354 07.9 9 10.4	79 23.3 5	09.8	297 08.7 312 11.8	06.8	218 16.8 N17 27.4 233 19.3 27.5	58 23.8 S21 27.7 73 26.0 27.7	Arcturus Atria	146 11.3 N19 13.6 108 05.0 S69 00.7
20	24 12.8	109 21.4	09.8	327 14.9	06.8	248 21.9 27.5	88 28.1 27.6	Avior	234 24.5 \$59 28.6
21 22	39 15.3 54 17.8	124 20.4 139 19.4	·· 09.8 09.8	342 18.0 357 21.0	·· 06.7 06.6	263 24.5 · · 27.6 278 27.1 27.6	103 30.3 · · 27.6 118 32.5 27.5	Belliotrix Betelgeuse	278 49.7 N 6 20.6 271 19.2 N 7 24.4
23	69 20.2	154 18.4	09.8	12 24.1	06.6	293 29.7 27.7	133 34.7 27.5	nasorBenze	2/1 17.2 10 / 24.4
1600	84 22.7	169 17.5 5			N22 06.5	308 32.3 N17 27.7	148 36.9 S21 27.4	Canopus	264 03.1 552 41.3
01	99 25.2 114 27.6	184 16.5 199 15.5	09.7 09.7	42 30.2	06.5 06.4	323 34.9 27.7 338 37.5 27.8	163 39.0 27.4 178 41.2 27.4	Capella Daneb	280 58.9 N45 59.5 49 43.4 N45 15.1
03	129 30.1		•• 09.7	72 36.4	·· 06.3	353 40.1 · · 27.8	193 43.4 · · 27.3	Denebola	182 50.8 N14 37.2
04 05	144 32.6 159 35.0	229 13.5 244 12.6	09.7 09.6	87 39.4 102 42.5	06.3 06.2	8 42.7 27.9 23 45.3 27.9	208 45.6 27.3 223 47,7 27.2	Diphda	349 12.6 518 02.2
06	174 37.5	259 11.6 S		102 42.5	1	38 47.8 N17 28.0	238 49.9 \$21 27.2	Dubhe	194 11.9 N61 47.6
07	189 39.9	274 10.6	09.6	132 48.6	06.1	53 50.4 28.0	253 52.1 27.1	Elnath	278 33.5 N28 36.1
80 S 09	204 42.4 219 44.9	289 09.6 304 08.7	09.5	147 51.7	06.0	68 53.0 28.1 83 55.6 · · 28.1	268 54.3 27.1 283 56.4 · · 27.0	Eltanin Enif	90 54.5 N51 29.3 34 03.8 N 9 50.1
U 10	234 47.3	319 07.7	09.5	177 57.8	05.9	98 58.2 28.2	298 58.6 27.0	Fomalhaut	15 42.5 S29 40.3
N 11	249 49.8	334 06.7	09,4	193 00.8	05.8	114 00.8 28.2	314 00.8 27.0		
D 12 A 13	264 52.3	349 05.7 S 4 04.8	24 09.4	208 03.9 223 06.9	N22 05.8 05.7	129 03.4 N17 28.3 144 06.0 28.3	329 03.0 S21 26.9 344 05.2 26.9	Gacrox Gienah	172 20.1 557 03.6 176 09.8 517 29.5
Y 14	294 57.2	19 03.8	09.3	238 10.0	05.6	159 08.6 28.3	359 07.3 26.8	Hadar	149 12.5 S60 19.6
15 16	309 59.7 325 02.1	34 02.8 49 01.8	· · · 09.3 09.2	253 13.0 268 16.1	··· 05.6 05.5	174 11.2 · · 28.4 189 13.8 28.4	14 09.5 · · 26.8 29 11.7 26.7	Hamal Kaus Aust.	328 19.6 N23 25.4 84 06.5 \$34 23.5
17	340 04.6	64 00.8	09.2	283 19.1	05.5	204 16.4 28.5	44 13.9 26.7		04 00.5 554 25.5
18	355 07.1	78 59.9 5		298 22.2		219 19.0 N17 28.5	59 16.0 521 26.6	Kochab	137 19.9 N74 11.2
19 20	10 09.5	93 58.9 108 57.9	09.1 09.0	313 25.2 328 28.3	05.3 05.3	234 21.6 28.6 249 24.2 28.6	74 18.2 26.6 89 20.4 26.6	Markab Menkar	13 55.2 N15 09.6 314 32.4 N 4 03.4
21	40 14.4	123 56.9	• • 09.0	343 31.3	· · 05.2	264 26.8 · · 28.7	104 22.6 · · 26.5	Menkent	148 27.8 S36 19.5
22 23	55 16.9 70 19.4	138 56.0 153 55.0	08.9 08.9	358 34.3 13 37.4	05.2 05.1	279 29.4 28.7 294 32.0 28.8	119 24.7 26.5 134 26.9 26.4	Mioplacidus	221 42.9 569 40.6
1700	85 21.8	168 54.0 S	-		N22 05.0	309 34.6 N17 28.8	149 29.1 S21 26.4	Mirfok	309 04.2 N49 50.0
01	100 24.3	183 53.0	08.8	43 43.4	05.0	324 37.2 28.9	164 31.3 26.3	Nunki	76 19.5 S26 18.6
03	115 26.8 130 29.2	198 52.1 213 51.1	08.7	58 46.5	04.9	339 39.8 28.9 354 42.4 •• 29.0	179 33.4 26.3 194 35.6 · · 26.2	Peacock Poliux	53 46.0 556 46.1 243 47.9 N28 02.9
	145 31.7	228 50.1	08.6	88 52.5	04.8	9 45.0 29.0	209 37.8 26.2	Procyan	245 17.0 N 5 14.9
05 06	160 34.2 175 36.6	243 49.1 258 48.1 5	08.5	103 55.6 118 58.6	04.7 N22 04 7	24 47.6 29.1 39 50.2 N17 29.1	224 40.0 26.2 239 42.1 521 26.1	Recellberry	96 22.4 N12 33.9
07	190 39.1	273 47.2	08.4	134 01.6	04.6	54 52.8 29.2	254 44.3 26.1	Regulus	208 01.3 N12 00.6
	205 41.5	288 46.2	08.4	149 04.6	04.6	69 55.4 29.2		Rigel Rigel	281 27.9 S 8 12.6
	220 44.0	303 45.2 318 44.2	08.3	164 07.6 179 10.7	·· 04.5 04.4	84 58.0 · · 29.2 100 00.6 29.3	284 48.7 · · 26.0 299 50.8 25.9	Rigil Kent. Sabik	140 15.4 S60 47.7 102 32.2 S15 42.9
N 11	250 48.9	333 43.3	08.2	194 13.7	04.4	115 03.2 29.3	314 53.0 25.9		
D 12 A 13	265 51.4 280 53.9	348 42.3 S 3 41.3	24 08.1 08.0	209 16.7	N22 04.3 04.3	130 05.8 N17 29.4 145 08.4 29.4	329 55.2 S21 25.8 344 57.4 25.8	Schedar Shauta	349 59.8 N56 29.7 96 45.2 S37 05.9
Ŷ 14	295 56.3	18 40.3	08.0		04.2	145 08.4 29.4		Sirius	258 48.2 S16 42.1
	310 58.8		•• 07.9			175 13.6 · · 29.5	15 01.7 · · 25.7	Spica Subail	158 49.2 \$11 06.9 223 04.6 \$43 23.6
16 17	326 01.3 341 03.7	48 38.4 63 37.4	07.8 07.7	269 28.8 284 31.8	04.1 04.0	190 16.2 29.6 205 18.8 29.6	30 03.9 25.7 45 06.1 25.6	Suhail	223 04.0 343 23.0
18	356 06.2	78 36.4 5	24 07.7	299 34.8	N22 04.0	220 21.4 N17 29.7	60 08.2 S21 25.6	Vego	80 50.8 N38 46.5
19 20	11 08.7 26 11.1	93 35.5 108 34.5	07.6 07.5	314 37.8 329 40.8	03.9 03.9	235 24.0 29.7 250 26.6 29.8	75 10.4 25.5 90 12.6 25.5	Zuben'ubi	137 24.4 S16 00.3
21	41 13.6		•• 07.4	344 43.8	·· 03.8	265 29.2 · · 29.8	105 14.8 • • 25.4		S.H.A. Mer. Pass.
22	56 16.0	138 32.5	07.3	359 46.8	03.8	280 31.8 29.9		Venus	84 54.8 12 44
23	71 18.5	153 31.6	07.3	14 49.8	03.7	295 34.4 29.9	135 19.1 25.3	Mars Jupiter	303 04.5 22 06 224 09.6 3 25
Mer. Pos	s. 18 19.5	v - 1.0	d 0.0	v 3.1	d 0.1	v 2.6 d 0.0	v 2.2 d 0.0	Saturn	64 14.2 14 04
			_				L		

DECEMBER 15, 16, 17 (SAT., SUN., MON.)

		DECEMBER 15, 1	6, T	7 (SA	t., su	N., N	\ON.}			243
UT	SUN	MOON	Lot.	Twi Naut.	light Civil	Sunrise	15	Moo 16	nrise 17	18
(GMT	G.H.A. Dec.	G.H.A. ʊ Dec. d H.P. • / • / /	N 72	08 21	ь т 10 49	h m	h m	h m	h m	h m
15 ⁰⁰	170 17.4 14.7	222 01.9 11.5 24 24.2 5.1 54.0	N 70 68 66	08 01 07 46 07 33	09 49 09 14 08 49	10 29				
0	226 16.8 15.0 241 16.5 15.1	251 02.8 11.4 24 34.3 4.9 54.0 265 33.2 11.3 24 39.2 4.8 54.0	64 62	07 22 07 12	08 30 08 14	09 47 09 19	09 26 08 34	09 50	10 38	11 41 10 58
0: 0(0)	271 15.9 S23 15.4	280 03.5 11.3 24 44.0 4.7 54.0 294 33.8 11.3 524 48.7 4.5 54.0 309 04.1 11.2 24 53.2 4.4 54.0	60 N 58 56	07 04 06 56 06 50	08 00 07 49 07 39	08 58 08 41 08 26	08 02 07 38. 07 19	09 11 08 44 08 23	10 00 09 33 09 12	10 29 10 07 09 49
S 08 A 09	3 301 15.3 15.6 316 15.0 . 15.8	323 34.3 11.2 24 57.6 4.4 54.0 338 04.5 11.2 25 02.0 4.2 54.0	54 52	06 43 06 38	07 30 07 21	08 13 08 02	07 03 06 50	08 05 07 50	08 55 08 40	09 33 09 20
T 10 U 11 R 11	346 14.4 16.0	352 34.7 11.1 25 06.2 4.0 54.0 7 04.8 11.1 25 10.2 4.0 54.0 21 34.9 11.0 \$25 14.2 3.9 53.9	50 45 N 40	06 33 06 21 06 11	07 14 06 58 06 45	07 53 07 32 07 15	06 38 06 13 05 53	07 37 07 10 06 49	08 27 08 01 07 40	09 08
	16 13.8 16.3 31 13.5 16.4	36 04.9 11.0 25 18.1 3.7 53.9 50 34.9 11.0 25 21.8 3.6 53.9	35 30	06 01 05 53	06 33 06 22	07 01 06 49	05 37 05 23	06 32 06 17	07 22 07 07	08 08 07 54
' 19 10 17	61 12.9 16.7	65 04.9 11.0 25 25.4 3.5 53.9 79 34.9 10.9 25 28.9 3.4 53.9 94 04.8 10.9 25 32.3 3.2 53.9	20 N 10 0	05 36 05 20 05 03	06 04 05 46 05 29	06 28 06 09 05 52	04 59 04 38 04 19	05 51 05 29 05 09	06 42 06 20 05 59	07 30 07 09 06 49
18	106 12.0 17.1	108 34.7 10.9 S25 35.5 3.2 53.9 123 04.6 10.8 25 38.7 3.0 53.9	S 10 20	04 44 04 22	05 11 04 51	05 34 05 15	04 00 03 39	04 48 04 26	05 39 05 16	05 30 05 09
20 21 22	136 11.4 17.3	137 34.4 10.8 25 41.7 2.8 53.9 152 04.2 10.8 25 44.5 2.8 53.9 166 34.0 10.8 25 47.3 2.7 53.9	30 35 40	03 53 03 34 03 11	04 26 04 11 03 53	04 53 04 41 04 26	03 16 03 02 02 46	04 01 03 46 03 29	04 51 04 36 04 18	05 45 05 30 05 14
$\frac{22}{16_{01}^{00}}$	181 10.5 523 17.7	181 03.8 10.7 25 50.0 2.5 53.9 195 33.5 10.7 S25 52.5 2.4 53.9	45 S 50	02 41	03 30 03 01	04 08 03 45	02 27 02 03	03 08	03 57	04 54
02	211 09.9 17.9	210 03.2 10.7 25 54.9 2.3 53.9 224 32.9 10.7 25 57.2 2.1 53.9 239 02.6 10.6 25 59.3 2.0 53.9	52 54 56	01 28 00 44 ///	02 46 02 28 02 06	03 34 03 22 03 08	01 52 01 39 01 24	02 29 02 15 01 58	03 18 03 03 02 45	04 17 04 03 03 47
04 05 06	256 08.9 18.3	253 32.2 10.7 26 01.3 2.0 53.9 268 01.9 10.6 26 03.3 1.7 53.9 282 31.5 10.6 526 05.0 1.7 53.9	58 S 60	111 111	01 37 00 48	02 51 02 31	01 07 00 46	01 38 01 12	02 24 01 57	03 28 03 04
07	286 08.3 18.5 301 08.0 18.6	297 01.1 10.5 26 06.7 1.5 53.9 311 30.6 10.6 26 08.2 1.4 53.9	Lat.	Sunset	Twil Civil	ight Naut.	15	Mod 16	nset 17	18
S 09 U 10 N 11	331 07.4 18.8	326 00.2 10.5 26 09.6 1.3 53.9 340 29.7 10.6 26 10.9 1.2 53.9 354 59.3 10.5 26 12.1 1.0 53.9	N 72	h m	h m 13 02	հ տ 15 30	h m	h m	t m	h m
D 12 A 13	1 06.8 523 19.0 16 06.5 19.2	9 28.8 10.5 S26 13.1 0.9 53.9 23 58.3 10.5 26 14.0 0.8 53.9	N 70 68		14 02 14 37	15 50 16 05				
Y 14 15 16	46 05.9 19.4	38 27.8 10.5 26 14.8 0.7 53.9 52 57.3 10.5 26 15.5 0.5 53.9 67 26.8 10.4 26 16.0 0.4 53.9	\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	13 22 14 04 14 32	15 02 15 21 15 37	16 18 16 29 16 39	11 30 12 22	12 50	13 48	14 28 15 11
17 18 19	91 05.0 S23 19.7	81 56.2 10.5 26 16.4 0.3 53.9 96 25.7 10.5 526 16.7 0.1 53.9	60 N 58	14 53 15 10	15 51 16 02	16 47 16 55	12 54 13 18	13 29 13 56	14 25 14 52	15 40 16 02
20 21	121 04.4 19.9 136 04.1 . 20.0	110 55.2 10.4 26 16.8 0.1 53.9 125 24.6 10.5 26 16.9 0.1 54.0 139 54.1 10.4 26 16.8 0.3 54.0	56 54 52	15 25 15 38 15 49	16 12 16 21 16 30	17 01 17 08 17 13	13 38 13 54 14 08	14 18 14 35 14 50	15 12 15 30 15 44	16 20 16 35 16 48
22	166 03.5 20.2	154 23.5 10.5 26 16.5 0.3 54.0 168 53.0 10.4 26 16.2 0.5 54.0 183 22.4 10.5 526 15.7 0.6 54.0	50 45 N 40	15 58 16 19 16 36	16 37 16 53 17 06	17 18 17 30 17 40	14 20 14 45 15 05	15 04 15 30 15 52	15 57 16 23 16 44	16 59 17 23 17 42
*' 01 02	196 02.9 20.4 211 02.6 20.5	197 51.9 10.4 26 15.1 0.7 54.0 212 21.3 10.5 26 14.4 0.9 54.0	35 30	16 50 17 02	17 18 17 29	17 50 17 59	15 22 15 37	16 09 16 24	17 01 17 16	17 58 18 11
	241 01.9 20.7	226 50.8 10.5 26 13.5 1.0 54.0 241 20.3 10.4 26 12.5 1.1 54.0 255 49.7 10.5 26 11.4 1.2 54.0	20 N 10 0	17 23 17 42 17 59	17 47 18 05 18 22	18 15 18 31 18 48	16 01 16 23 16 43	16 50 17 12 17 33	17 42 18 03 18 23	18 35 18 55 19 13
06	271 01.3 S23 20.9 286 01.0 21.0	270 19.2 10.5 S26 10.2 1.4 54.0 284 48.7 10.5 26 08.8 1.4 54.0	S 10 20	18 17 18 36	18 40 19 00	19 07 19 29	17 03 17 24	17 54 18 16	18 44 19 05	19 32 19 51
08 M 09 O 10	316 00.4 21.2 331 00.1 21.3	299 18.2 10.5 26 07.4 1.6 54.0 313 47.7 10.5 26 05.8 1.8 54.0 328 17.2 10.5 26 04.0 1.8 54.0	30 35 40	18 58 19 11 19 26	19 25 19 40 19 58	19 58 20 17 20 40	17 49 18 04 18 21	18 41 18 57 19 14	19 30 19 45 20 02	20 14 20 28 20 43
N 11 D 12 A 13	0 59.5 523 21.5	342 46.7 10.5 26 02.2 2.0 54.0 357 16.2 10.6 526 00.2 2.1 54.0 11 45.8 10.5 25 58.1 2.3 54.0	45 S 50 52	19 44 20 06 20 17	20 21 20 51 21 05	21 11 21 56 22 23	18 41 19 07 19 19	19 35 20 02 20 15	20 22 20 47 21 00	21 01 21 24 21 34
Y 14	30 58.9 21.6 45 58.6 21.7	26 15.3 10.6 25 55.8 2.3 54.0 40 44.9 10.6 25 53.5 2.5 54.0	54 56	20 17 20 29 20 43	21 06 21 24 21 46	22 23 23 09 ///	19 34 19 50	20 15 20 30 20 47	21 14 21 30	21 34 21 46 22 00
16 17 18	75 58.0 21.9	55 14.5 10.6 25 51.0 2.6 54.0 69 44.1 10.7 25 48.4 2.8 54.0 84 13.8 10.6 S25 45.6 2.8 54.0	58 S 60	21 00 21 20	22 15 23 04	HH HH	20 10 20 36	21 08 21 35	21 50 22 14	22 16 22 36
19	105 57.3 22.1 120 57.0 22.1	98 43.4 10.7 25 42.8 3.0 54.0 113 13.1 10.7 25 39.8 3.1 54.1	Day	Eqn. o		Mer.	Mer.	Pass.	Age	Phase
21 22 23		127 42.8 10.7 25 36.7 3.2 54.1 142 12.5 10.7 25 33.5 3.4 54.1 156 42.2 10.8 25 30.1 3.4 54.1	15	00 "	12 ^h 04 57	Pass. h m 11 55	Upper h m 10 31	10wer 22 56	ď 28	
	S.D. 16.3 d 0.1	S.D. 14.7 14.7 14.7	16 17	04 42 04 13	04 28 03 59	11 56 11 56	11 21 12 11	23 46 24 36	29 00	